Comparison of Data Mining Algorithms for Predicting the Cancer Disease Using Python']Python

被引:0
|
作者
Mehdi, Mehtab [1 ]
Pahwa, Kanika [1 ]
Sharma, Bharti [2 ]
机构
[1] SRM Univ, Sonipath, India
[2] DIT Univ Dehradun, Dehra Dun, Uttarakhand, India
关键词
Ensemble Methods; Support Vector Machine; Random Forest; Decision Trees; Hadoop; MACHINE;
D O I
10.1109/smart46866.2019.9117466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fundamentally, machine learning is the part of data science which is nothing but AL We use machine learning algorithms for predicting the future results after analyzing the past data. This technique of data processing is called data analytics. Machine Learning algorithms are divided in three sections: Supervised, Unsupervised and Reinforcement. These algorithms are further subdivided in other sections. In this paper we are comparing these algorithms by which in future we could easily update the accuracy level of the ML algorithms. For doing this we used the healthcare data which has been uploaded on the kaggle. We implemented the machine learning algorithm using python programming language and calculated the accuracy level of each algorithm.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [1] An overview and comparison of free Python']Python libraries for data mining and big data analysis
    Stancin, I.
    Jovic, A.
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 977 - 982
  • [2] Orange: Data Mining Toolbox in Python']Python
    Demsar, Janez
    Curk, Tomaz
    Erjavec, Ales
    Gorup, Crt
    Hocevar, Tomaz
    Milutinovic, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Staric, Anze
    Stajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2349 - 2353
  • [3] Geophysical data analysis using Python']Python
    Sáenz, J
    Zubillaga, J
    Fernández, J
    COMPUTERS & GEOSCIENCES, 2002, 28 (04) : 457 - 465
  • [4] Using the CSD Python']Python API for interactive analytics and data mining of the Cambridge Structural Database
    Sanschagrin, Paul C.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A67 - A67
  • [5] Design of Data Mining of WeChat Public Platform Based on Python']Python
    You, Fucheng
    Gong, Hechen
    Guan, Xinxin
    Cao, Yue
    Zhang, Chenwei
    Lai, Shuren
    Zhao, Yangze
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [6] Mining Imperfect Data: With Examples in R and Python']Python, Second Edition
    Stroch, Joel A.
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (06): : 110 - 110
  • [7] Feature Selection Algorithms as One of the Python']Python Data Analytical Tools
    Pilnenskiy, Nikita
    Smetannikov, Ivan
    FUTURE INTERNET, 2020, 12 (03):
  • [8] Orange: Data mining toolbox in python
    Demšar, Janez
    Curk, Tomaz
    Erjavec, Aleš
    Gorup, Črt
    Hočevar, Tomaz
    Milutinovič, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Starič, Anze
    Štajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    Journal of Machine Learning Research, 2013, 14 : 2349 - 2353
  • [9] interlab: A Python']Python Module for Analyzing Interlaboratory Comparison Data
    Sheen, David A.
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2019, 124
  • [10] Comparison of machine and deep learning algorithms using Google Earth Engine and Python']Python for land classifications
    Nigar, Anam
    Li, Yang
    Jat Baloch, Muhammad Yousuf
    Alrefaei, Abdulwahed Fahad
    Almutairi, Mikhlid H.
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12