Classifying Search Queries Using the Web as a Source of Knowledge

被引:26
|
作者
Gabrilovich, Evgeniy [1 ]
Broder, Andrei [1 ]
Fontoura, Marcus [2 ]
Joshi, Amruta [3 ]
Josifovski, Vanja [1 ]
Riedel, Lance [1 ]
Zhang, Tong [4 ]
机构
[1] Yahoo Res, Santa Clara, CA 95054 USA
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Comp Sci, Rio de Janeiro, Brazil
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
关键词
Algorithms; Measurement; Performance; Experimentation; Pseudo relevance feedback; query classification; Web search; RETRIEVAL;
D O I
10.1145/1513876.1513877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a methodology for building a robust query classification system that can identify thousands of query classes, while dealing in real time with the query volume of a commercial Web search engine. We use a pseudo relevance feedback technique: given a query, we determine its topic by classifying the Web search results retrieved by the query. Motivated by the needs of search advertising, we primarily focus on rare queries, which are the hardest from the point of view of machine learning, yet in aggregate account for a considerable fraction of search engine traffic. Empirical evaluation confirms that our methodology yields a considerably higher classification accuracy than previously reported. We believe that the proposed methodology will lead to better matching of online ads to rare queries and overall to a better user experience.
引用
下载
收藏
页数:28
相关论文
共 50 条
  • [1] Classifying Web Search Queries to Identify High Revenue Generating Customers
    Ortiz-Cordova, Adan
    Jansen, Bernard J.
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (07): : 1426 - 1441
  • [2] Manually Classifying User Search Queries on an Academic Library Web Site
    Chapman, Suzanne
    Desai, Shevon
    Hagedorn, Kat
    Varnum, Ken
    Mishra, Sonali
    Piacentine, Julie
    JOURNAL OF WEB LIBRARIANSHIP, 2013, 7 (04) : 401 - 421
  • [3] Classifying the user intent of User intent of web queries web queries using k-means clustering
    Kathuria, Ashish
    Jansen, Bernard J.
    Hafernik, Carolyn
    Spink, Amanda
    INTERNET RESEARCH, 2010, 20 (05) : 563 - 581
  • [4] Using Structured Queries for Source Code Search
    Eddy, Brian P.
    Kraft, Nicholas A.
    2014 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2014, : 431 - 435
  • [5] Upgrading web search queries
    Owais, Suhail S. J.
    Kroemer, Pavel
    Snasel, Vaclav
    Maleki-Dizaji, S.
    Nyongesa, Henry O.
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 128 - +
  • [6] Robust classification of rare queries using web knowledge
    Broder, Andrei Z.
    Fontoura, Marcus
    Gabrilovich, Evgeniy
    Joshi, Amruta
    Josifovski, Vanja
    Zhang, Tong
    Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07, 2007, : 231 - 238
  • [7] Web Search Using Summarization on Clustered Web Documents Retrieved by User Queries
    Qumsiyeh, Rani
    Ng, Yiu-Kai
    2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, 2015, : 401 - 404
  • [8] Entity Ranking for Queries with Modifiers Based on Knowledge Bases and Web Search Results
    Imrattanatrai, Wiradee
    Kato, Makoto P.
    Tanaka, Katsumi
    Yoshikawa, Masatoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09) : 2279 - 2290
  • [9] Web Similarity in Sets of Search Terms Using Database Queries
    Cohen A.R.
    Vitányi P.M.B.
    SN Computer Science, 2020, 1 (3)
  • [10] Using Related Queries to Improve Web Search Results Ranking
    Dupret, Georges
    Zilleruelo-Ramos, Ricardo
    Fujita, Sumio
    STRING PROCESSING AND INFORMATION RETRIEVAL, 2010, 6393 : 213 - +