Portfolio selection under possibilistic mean-variance utility and a SMO algorithm

被引:62
|
作者
Zhang, Wei-Guo [1 ]
Zhang, Xi-Li [1 ]
Xiao, Wei-Lin [1 ]
机构
[1] S China Univ Technol, Sch Business Adm, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Possibilistic distribution; Portfolio selection; Mean-variance utility; Parametric quadratic programming; Sequential minimal optimization (SMO); POSSIBILITY DISTRIBUTIONS; EFFICIENT FRONTIER; BOUNDED ASSETS; MODELS; INFORMATION;
D O I
10.1016/j.ejor.2008.07.011
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a new portfolio selection model with the maximum utility based on the interval-valued possibilistic mean and possibilistic variance, which is a two-parameter quadratic programming problem. We also present a sequential minimal optimization (SMO) algorithm to obtain the optimal portfolio. The remarkable feature of the algorithm is that it is extremely easy to implement, and it can be extended to any size of portfolio selection problems for finding an exact optimal solution. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:693 / 700
页数:8
相关论文
共 50 条
  • [1] A note on "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm"
    Corazza, Marco
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 288 (01) : 343 - 345
  • [2] Two Possibilistic Mean-Variance Models for Portfolio Selection
    Chen, Wei
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 1035 - 1044
  • [3] Portfolio selection: Possibilistic mean-variance model and possibilistic efficient frontier
    Zhang, WG
    Wang, YL
    ALGORITHMIC APPLICATIONS IN MANAGEMENT, PROCEEDINGS, 2005, 3521 : 203 - 213
  • [4] A class of weighted possibilistic mean-variance portfolio selection problems
    Wang, X
    Xu, WJ
    Zhang, WG
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2036 - 2040
  • [5] Possibilistic mean-variance models and efficient frontiers for portfolio selection problem
    Zhang, Wei-Guo
    Wang, Ying-Luo
    Chen, Zhi-Ping
    Nie, Zan-Kan
    INFORMATION SCIENCES, 2007, 177 (13) : 2787 - 2801
  • [6] ON MEAN-VARIANCE PORTFOLIO SELECTION
    SCHNABEL, JA
    MANAGERIAL AND DECISION ECONOMICS, 1984, 5 (01) : 3 - 6
  • [7] Mean-variance portfolio selection under partial information
    Xiong, Jie
    Zhou, Xun Yu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 156 - 175
  • [8] Mean-variance portfolio selection under a constant elasticity of variance model
    Shen, Yang
    Zhang, Xin
    Siu, Tak Kuen
    OPERATIONS RESEARCH LETTERS, 2014, 42 (05) : 337 - 342
  • [9] Optimal mean-variance portfolio selection
    Pedersen, Jesper Lund
    Peskir, Goran
    MATHEMATICS AND FINANCIAL ECONOMICS, 2017, 11 (02) : 137 - 160
  • [10] Behavioral mean-variance portfolio selection
    Bi, Junna
    Jin, Hanging
    Meng, Qingbin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (02) : 644 - 663