Conservative high-order discontinuous Galerkin remap scheme on curvilinear polyhedral meshes

被引:7
|
作者
Lipnikov, Konstantin [1 ]
Morgan, Nathaniel [2 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Appl Math & Plasma Phys Grp, Mail Stop B284, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, X Computat Phys Div, Methods & Algorithms Grp, Mail Stop B284, Los Alamos, NM 87545 USA
关键词
Advection-based remap; High-order schemes; Polytopal meshes; Discontinuous Galerkin; Curvilinear meshes; Data remap; DISCRETIZATION; STABILITY; EQUATIONS; EFFICIENT; ACCURATE; FLOWS; LAW;
D O I
10.1016/j.jcp.2020.109712
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A data transfer (remap) between two meshes is an important step of each arbitrary Lagrangian-Eulerian (ALE) simulation. We develop a conservative scheme for remapping-high-order discontinuous Galerkin fields on high-order polytopal meshes with curved faces. This scheme uses a virtual element function to define the remap velocity. We show that the optimal accuracy is achieved when the remap problem is written and is solved as a coupled system of two conservative equations. The properties of the proposed scheme are studied numerically for smooth and discontinuous fields on cubic and prismatic meshes. Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A high-order conservative remap for discontinuous Galerkin schemes on curvilinear polygonal meshes
    Lipnikov, Konstantin
    Morgan, Nathaniel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
  • [2] High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes
    Antonietti, P. F.
    Mazzieri, I.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 414 - 437
  • [3] Utilization of the Brinkman Penalization to Represent Geometries in a High-Order Discontinuous Galerkin Scheme on Octree Meshes
    Anand, Nikhil
    Ebrahimi Pour, Neda
    Klimach, Harald
    Roller, Sabine
    [J]. SYMMETRY-BASEL, 2019, 11 (09):
  • [4] A high-order moment limiter for the discontinuous Galerkin method on triangular meshes
    Dutt, Krishna
    Krivodonova, Lilia
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 433
  • [5] A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes
    Lee, D.
    Lowrie, R.
    Petersen, M.
    Ringler, T.
    Hecht, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 289 - 302
  • [6] A high-order discontinuous Galerkin method for level set problems on polygonal meshes
    Lipnikov, Konstantin
    Morgan, Nathaniel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [7] A HIGH-ORDER FINITE DIFFERENCE WENO SCHEME FOR IDEAL MAGNETOHYDRODYNAMICS ON CURVILINEAR MESHES
    Christlieb, Andrew J.
    Feng, Xiao
    Jiang, Yan
    Tang, Qi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2631 - A2666
  • [8] Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods
    Botti, Lorenzo
    Di Pietro, Daniele A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 370 : 58 - 84
  • [9] High-order discontinuous Galerkin solver on hybrid anisotropic meshes for laminar and turbulent simulations
    Jiang, Zhen-hua
    Yan, Chao
    Yu, Jian
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (07) : 799 - 812
  • [10] High-order discontinuous Galerkin solver on hybrid anisotropic meshes for laminar and turbulent simulations
    姜振华
    阎超
    于剑
    [J]. Applied Mathematics and Mechanics(English Edition), 2014, 35 (07) : 799 - 812