Molecular Markers Associated with Cold-Hardiness in Camellia

被引:0
|
作者
Joung, Y. H. [1 ]
Rowland, L. J. [2 ]
Kim, J. -Y. [3 ]
Roh, M. S. [4 ]
机构
[1] Chonnam Natl Univ, Sch Biol Sci & Technol, Kwangju 500757, Jeonnam, South Korea
[2] USDA, Inst Plant Sci, Agr Res Serv, Genet Improvement Fruits & Vegetables Lab, Beltsville, MD 20705 USA
[3] Internatl Agr Res & Dev Team, Rural Dev Admin, Suwon 441789, South Korea
[4] USDA, US Natl Arboretum, Floral & Nursey Plants Res Unit, Agr Res Serv, Beltsville, MD 20705 USA
关键词
DNA fingerprinting; sequence characterized amplified region (SCAR) markers; expressed sequence tags; polymerase chain reaction; random amplified polymorphic; DNA (RAPD) markers; EST-PCR MARKERS; ACCLIMATION; BUDS;
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sequence-characterized amplified region (SCAR) markers from expressed sequence tag-polymerase chain reaction (EST-PCR) and random amplified polymorphic DNA (RAPD) markers were developed with the goal to separate cold hardy Camellia's from non-cold hardy ones. A total of 28 cold hardy and non-cold hardy Camellia genotypes were evaluated using 11 EST-PCR and 60 RAPD primers. One EST-PCR primer pair based on a Camellia sinensis sequence (here referred to as CAME 13; forward, 5'-CGGGCAGGTACCTTCTGATA-3' and reverse, 5'-TGCAGAAGATGGAGATGCAG -3') and one RAPD primer (Operon A-12) appeared to have potential for discriminating between the cold hardy and non-cold hardy genotypes. SCAR primer pairs were designed based on the sequence of the C. japonica bands amplified by the CAME 13 and Operon A-12 primers. The ESTSCAR-19839 primer pair (forward, 5'-CGGGCAGGTACCTTCTGATA-3'; reverse, 5'-CCTCAGCCGTAGTTGCATTT-3') proved useful for identifying noncold hardy Camellia plants, whereas the fragment amplified by the RAPD-based SCAR primers appeared monomorphic.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] Genomic Markers Associated with Cold-Hardiness inBrassica rapaL.
    Amosova, A. V.
    Samatadze, T. E.
    Mozgova, G. V.
    Kipen, V. N.
    Dubovskaya, A. G.
    Artemyeva, A. M.
    Yurkevich, O. Yu.
    Zoshchuk, S. A.
    Lemesh, V. A.
    Muravenko, O. V.
    [J]. MOLECULAR BIOLOGY, 2020, 54 (04) : 541 - 552
  • [2] Genomic Markers Associated with Cold-Hardiness in Brassica rapa L.
    A. V. Amosova
    T. E. Samatadze
    G. V. Mozgova
    V. N. Kipen
    A. G. Dubovskaya
    A. M. Artemyeva
    O. Yu. Yurkevich
    S. A. Zoshchuk
    V. A. Lemesh
    O. V. Muravenko
    [J]. Molecular Biology, 2020, 54 : 541 - 552
  • [3] COLD-HARDINESS IN RUBUS
    HUMMER, K
    FUCHIGAMI, LH
    PETERS, V
    BELL, N
    [J]. FRUIT VARIETIES JOURNAL, 1995, 49 (01): : 52 - 58
  • [4] Photoperiod, diapause and cold-hardiness
    Hodkova, M
    Hodek, I
    [J]. EUROPEAN JOURNAL OF ENTOMOLOGY, 2004, 101 (03) : 445 - 458
  • [5] PRINCIPLES OF INSECT COLD-HARDINESS
    SALT, RW
    [J]. ANNUAL REVIEW OF ENTOMOLOGY, 1961, 6 : 55 - &
  • [6] Cold-hardiness in bumblebees.
    Vogt, D
    [J]. AMERICAN ZOOLOGIST, 2000, 40 (06): : 1246 - 1246
  • [7] Inorganic ions in cold-hardiness
    Zachariassen, KE
    Kristiansen, E
    Pedersen, SA
    [J]. CRYOBIOLOGY, 2004, 48 (02) : 126 - 133
  • [8] CLASSES OF INSECT COLD-HARDINESS
    BALE, JS
    [J]. FUNCTIONAL ECOLOGY, 1993, 7 (06) : 751 - 753
  • [9] Breeding for Cold-Hardiness in Passionfruit
    Maier, Raphael
    [J]. HORTSCIENCE, 2023, 58 (09) : S134 - S134
  • [10] ONTOGENY OF COLD-HARDINESS IN THE FLESH FLY
    LEE, RE
    DENLINGER, DL
    [J]. CRYOBIOLOGY, 1985, 22 (06) : 632 - 632