The part of sand behavior that is affected by time, such as creep, relaxation, and loading rate effects are not similar to those observed for clay. To throw more light on the time effects in sand, many series of drained triaxial compression experiments have been performed on crushed coral sand. These tests were all performed with a constant effective confining pressure of 200 kPa. The test series included experiments with specimens loaded at five different strain rates with a 256-fold ratio between the extreme rates, tests with sudden changes in strain rate from slow to fast and vice versa, and tests in which axial and volumetric creep strains were observed at stress differences of 500, 700, and 900 kPa. Creep creates structuration and this has to be overcome to produce further plastic straining. Experiments were also performed in which the stress difference was dropped quickly from three different values of 500, 700, and 900 kPa followed by creep. In these stress drop-creep tests five different magnitudes of stress drops were employed: 0, 100, 200, 300, and 400 kPa. The results involving conventional creep effects and stress drop-creep effects are presented and analyzed.