Efficient Parallel Preconditioned Conjugate Gradient Solver on GPU for FE Modeling of Electromagnetic Fields in Highly Dissipative Media

被引:10
|
作者
Peixoto de Camargos, Ana Flavia [1 ,2 ]
Silva, Viviane Cristine [1 ]
Guichon, Jean-Michel [3 ]
Munier, Gerard [3 ]
机构
[1] Univ Sao Paulo, Escola Politecn, BR-05508010 Sao Paulo, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Minas Gerais, Dept Engn, BR-35570000 Formiga, MG, Brazil
[3] Ecole Natl Super Electrochim & Electrome Grenoble, Thermodynam & Physicochim Met Lab, CNRS, Lab Genie Elect Grenoble, F-38402 St Martin Dheres, France
基金
巴西圣保罗研究基金会;
关键词
FEMs; graphic processing unit (GPU); linear systems; performance analysis;
D O I
10.1109/TMAG.2013.2285091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a performance analysis of a parallel implementation of preconditioned conjugate gradient solvers using graphic processing units with compute unified device architecture programming model. The solvers were optimized for the solution of sparse systems of equations arising from finite-element analysis of electromagnetic phenomena involved in the diffusion of underground currents in both steady state and under time-harmonic current excitation. We used both shifted incomplete Cholesky factorization and incomplete LU factorization as preconditioners. The results show a significant speedup using the graphics processing unit compared with a serial CPU implementation.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 24 条
  • [1] Parallel preconditioned conjugate gradient algorithm on GPU
    Helfenstein, Rudi
    Koko, Jonas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) : 3584 - 3590
  • [2] A Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform
    Ament, M.
    Knittel, G.
    Weiskopf, D.
    Strasser, W.
    PROCEEDINGS OF THE 18TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2010, : 583 - 592
  • [3] An efficient algebraic multigrid preconditioned conjugate gradient solver
    Iwamura, C
    Costa, FS
    Sbarski, I
    Easton, A
    Li, NA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (20-21) : 2299 - 2318
  • [4] Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU
    Gupta, Rohit
    van Gijzen, Martin B.
    Vuik, Cornelis Kees
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2012, 2013, 7851 : 36 - 49
  • [5] A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for the Poisson Problem
    Zhao Ning
    Wang XuBen
    JOURNAL OF COMPUTERS, 2012, 7 (12) : 3088 - 3095
  • [6] A multi-GPU parallel optimization model for the preconditioned conjugate gradient algorithm
    Gao, Jiaquan
    Zhou, Yuanshen
    He, Guixia
    Xia, Yifei
    PARALLEL COMPUTING, 2017, 63 : 1 - 16
  • [7] GPU Acceleration of Multigrid Preconditioned Conjugate Gradient Solver on Block-Structured Cartesian Grid
    Onodera, Naoyuki
    Idomura, Yasuhiro
    Hasegawa, Yuta
    Yamashita, Susumu
    Shimokawabe, Takashi
    Aoki, Takayuki
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION (HPC ASIA 2021), 2020, : 120 - 128
  • [8] Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs
    Mueller, Eike
    Guo, Xu
    Scheichl, Robert
    Shi, Sinan
    COMPUTING AND VISUALIZATION IN SCIENCE, 2013, 16 (02) : 41 - 58
  • [9] Wavelet-preconditioned conjugate gradient Poisson solver and its use in parallel processing
    N. Tanaka
    Computational Mechanics, 1999, 23 : 190 - 198
  • [10] Wavelet-preconditioned conjugate gradient Poisson solver and its use in parallel processing
    Tanaka, N
    COMPUTATIONAL MECHANICS, 1999, 23 (02) : 190 - 198