The group I metabotropic glutamate receptors (mGluRs) are positively coupled to phospholipase C. Through phospholipase C, group I mGluR activation increases intracellular concentrations of diacylglycerol which is known as a strong activator of protein kinase C (PKC). This study investigated the putative role of PKC in the regulation of transcription factor phosphorylation induced by group I mGluR activation in the rat striatum in vivo. We found that the group I agonist 3,5-dihydroxyphenylglycine (DHPG) injected into the dorsal striatum (caudate-putamen) increased phosphorylation of the two transcription factors, cAMP response element-binding protein (CREB) and Elk-1, and extracellular signal-regulated kinase 1/2 (ERK1/2) in the injected striatum. Inhibition of PKC with GF109203X significantly attenuated DHPG-stimulated CREB, Elk-1, and ERK1/2 phosphorylation. Activation of PKC with intracaudate injection of 12-O-tetradecanoylphorbol-13-acetate (TPA) mimicked DHPG actions in facilitating the phosphorylation of CREB, Elk-1, and ERK1/2. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors with the non-competitive antagonist MK801 or the competitive antagonist AP5 attenuated TPA-induced CREB, Elk-1, and ERK1/2 phosphorylation. Similarly, inhibition of Ca2+/calmodulin-dependent protein kinases (CaMK) with KN62 also resulted in a significant attenuation of TPA induction of the three phosphoproteins. The data obtained from this study indicate that selective activation of PKC is needed for the group I agonist-induced CREB, Elk-1, and ERK1/2 phosphorylation in striatal neurons. Activated PKC may, at least in part, facilitate the phosphorylation of transcription factors via an NMDA/CaMK-sensitive pathway. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved.