Continuous phase transitions for dynamical systems

被引:18
|
作者
Sarig, Omri [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1007/s00220-006-0072-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the asymptotic expansion of the topological pressure of one-parameter families of potentials at a point of non-analyticity. The singularity is related qualitatively and quantitatively to non-Gaussian limit laws and to slow decay of correlations with respect to the equilibrium measure.
引用
收藏
页码:631 / 667
页数:37
相关论文
共 50 条
  • [1] Continuous Phase Transitions for Dynamical Systems
    Omri Sarig
    Communications in Mathematical Physics, 2006, 267 : 631 - 667
  • [2] Dynamical quantum phase transitions in systems with continuous symmetry breaking
    Weidinger, Simon A.
    Heyl, Markus
    Silva, Alessandro
    Knap, Michael
    PHYSICAL REVIEW B, 2017, 96 (13)
  • [3] Dynamical quantum phase transitions in systems with broken continuous time and space translation symmetries
    Kosior, Arkadiusz
    Syrwid, Andrzej
    Sacha, Krzysztof
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [4] Numerical study of continuous and discontinuous dynamical phase transitions for boundary-driven systems
    Shpielberg, Ohad
    Don, Yaroslav
    Akkermans, Eric
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [5] Universality in dynamical phase transitions of diffusive systems
    Shpielberg, Ohad
    Nemoto, Takahiro
    Caetano, Joao
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [6] An introduction to phase transitions in stochastic dynamical systems
    Blythe, R. A.
    STATISTICAL PHYSICS OF AGEING PHENOMENA AND THE GLASS TRANSITION, 2006, 40 : 1 - +
  • [7] Continuous phase transitions in mesoscopic systems
    J. Berger
    J. Rubinstein
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2001, 52 : 347 - 355
  • [8] Continuous phase transitions in mesoscopic systems
    Berger, J
    Rubinstein, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (02): : 347 - 355
  • [9] Optimization in Mean and Phase Transitions in Controlled Dynamical Systems
    V. I. Arnold
    Functional Analysis and Its Applications, 2002, 36 : 83 - 92
  • [10] Multicomponent dynamical systems: SRB measures and phase transitions
    Blank, M
    Bunimovich, L
    NONLINEARITY, 2003, 16 (01) : 387 - 401