Limit cycles in a class of hybrid dynamical systems

被引:6
|
作者
Matveev, AS
Savkin, AV
机构
[1] St Petersburg Univ, Dept Math & Mech, St Petersburg 198904, Russia
[2] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
关键词
deterministic network; fluid model; stable limit cycles;
D O I
10.1007/s004980200005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with qualitative analysis of the so-called switched fluid networks. Such networks are used to model communication, computer, and flexible manufacturing systems. We prove that for any deterministic network from a specific class, there exists a finite number of limit cycles attracting all the trajectories of the system. Furthermore, we determine this number.
引用
收藏
页码:120 / 144
页数:25
相关论文
共 50 条
  • [1] Limit Cycles in a Class of Hybrid Dynamical Systems
    Alexey S. Matveev
    Andrey V. Savkin
    [J]. Mathematics of Control, Signals and Systems, 2002, 15 : 120 - 144
  • [2] Robust Stability of Hybrid Limit Cycles With Multiple Jumps in Hybrid Dynamical Systems
    Lou, Xuyang
    Li, Yuchun
    Sanfelice, Ricardo G.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (04) : 1220 - 1226
  • [3] Results on Stability and Robustness of Hybrid Limit Cycles for A Class of Hybrid Systems
    Lou, Xuyang
    Li, Yuchun
    Sanfelice, Ricardo G.
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 2235 - 2240
  • [4] Limit cycles of some class of dynamical systems with cylinder phase space
    Dolov, MV
    Kruglov, EV
    [J]. DIFFERENTIAL EQUATIONS, 1995, 31 (05) : 695 - 701
  • [5] Notions, Stability, Existence, and Robustness of Limit Cycles in Hybrid Dynamical Systems
    Lou, Xuyang
    Li, Yuchun
    Sanfelice, Ricardo G.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (08) : 4910 - 4925
  • [6] A versatile class of prototype dynamical systems for complex bifurcation cascades of limit cycles
    Sandor, Bulcsu
    Gros, Claudius
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [7] A versatile class of prototype dynamical systems for complex bifurcation cascades of limit cycles
    Bulcsú Sándor
    Claudius Gros
    [J]. Scientific Reports, 5
  • [8] On the Computational Complexity of Limit Cycles in Dynamical Systems
    Papadimitriou, Christos H.
    Vishnoi, Nisheeth K.
    [J]. ITCS'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INNOVATIONS IN THEORETICAL COMPUTER SCIENCE, 2016, : 403 - 403
  • [9] ON LIMIT-CYCLES OF A CLASS OF SYSTEMS
    DOLOV, MV
    KUZMIN, RV
    [J]. DIFFERENTIAL EQUATIONS, 1993, 29 (09) : 1282 - 1285
  • [10] The number of limit cycles in dynamical systems close to Hamiltonian systems
    Medvedev, VS
    Fedorov, EL
    [J]. DIFFERENTIAL EQUATIONS, 1996, 32 (08) : 1146 - 1148