Testing the hypothesis of absence of unobserved confounding in semiparametric bivariate probit models

被引:5
|
作者
Marra, Giampiero [1 ]
Radice, Rosalba [2 ]
Missiroli, Silvia [3 ,4 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ London, Dept Econ Math & Stat, London WC1E 7HX, England
[3] Univ Bologna, Dipartimento Sci Stat, I-40126 Bologna, Italy
[4] Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy
基金
英国工程与自然科学研究理事会;
关键词
Endogeneity; Lagrange multiplier test; Non-random sample selection; Penalized regression spline; Wald test; SAMPLE SELECTION; CONFIDENCE-INTERVALS; INFORMATION MATRIX; PERFORMANCE; INSURANCE; COVERAGE; SPLINES;
D O I
10.1007/s00180-013-0458-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Lagrange multiplier and Wald tests for the hypothesis of absence of unobserved confounding are extended to the context of semiparametric recursive and sample selection bivariate probit models. The finite sample size properties of the tests are examined through a Monte Carlo study using several scenarios: correct model specification, distributional and functional misspecification, with and without an exclusion restriction. The simulation results provide some guidelines which may be important for empirical analysis. The tests are illustrated using two datasets in which the issue of unobserved confounding arises.
引用
收藏
页码:715 / 741
页数:27
相关论文
共 50 条