Rapidly Evolving Cirrus Clouds Modulated by Convectively Generated Gravity Waves

被引:9
|
作者
Prasad, Abhnil A. [1 ]
Sherwood, Steven C. [1 ]
Reeder, Michael J. [2 ]
Lane, Todd P. [3 ]
机构
[1] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[2] Monash Univ, Sch Earth Atmosphere & Environm, Melbourne, Vic, Australia
[3] Univ Melbourne, Sch Earth Sci, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
deep convection; gravity waves; cirrus; troposphere; tropics; nucleation; HOMOGENEOUS ICE NUCLEATION; TROPICAL TROPOPAUSE; SQUALL-LINE; RADIATIVE-TRANSFER; MODEL; DEEP; PARAMETERIZATION; SIMULATIONS; DEHYDRATION; MECHANISMS;
D O I
10.1029/2019JD030538
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Cirrus clouds can strongly affect Earth's radiation balance, but questions remain about their growth mechanisms and rates. Here we show that gravity (buoyancy) waves generated by a storm in Northern Australia on 13 November 2015 caused an observable rippling effect on cirrus clouds up to 1,000km away, as seen by the recently launched Himawari-8/9 geostationary satellite. Regional model simulations reproduce the propagation speed of the wave, which agrees with theoretical predictions, and show that the wave amplitude and timing near the tropopause can account for the cirrus modulation. The observed cirrus reach peak optical depths of order 0.3-1.0 and appear roughly in phase with the arrival of the relative humidity maximum, providing new evidence that cirrus clouds can respond rapidly (<30min) to environmental lifting. Moreover, the edge of a thick anvil cloud attached to the storm itself is observed to expand at the same speed as the wave, showing that the lifting mechanism can also apply to optically thicker ice clouds close to convective centers.
引用
收藏
页码:7327 / 7338
页数:12
相关论文
共 50 条