Introduction to Kernel PCA and other Spectral Methods Applied to Unsupervised Learning

被引:0
|
作者
Gonzalo Sanchez, Luis [1 ]
Augusto Osorio, German [1 ]
Fernando Suarez, Julio [1 ]
机构
[1] Univ Nacl Colombia, Fac Ciencias Exactas & Nat, Dept Matemat & Estadist, Manizales, Colombia
来源
REVISTA COLOMBIANA DE ESTADISTICA | 2008年 / 31卷 / 01期
关键词
Kernel method; Cluster analysis; Model selection; Graph theory;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, the techniques of Kernel Principal Component Analysis (Kernel PCA or KPCA) and Spectral Clustering are introduced along with some illustrative examples. This work focuses on studying the effects of applying PCA as a preprocessing stage for clustering data. Several tests are carried out on real data to establish the pertinence of including PCA. The use of these methods requires of additional procedures such as parameter tuning; the kernel alignment is presented as an alternative for it. The results of kernel alignment expose a high level of agreement between the timing curves their respective Rand indexes. Finally, the study shows that the success of PCA is problem-dependent and no general criteria can be established.
引用
收藏
页码:19 / 40
页数:22
相关论文
共 50 条
  • [1] Learning eigenfunctions links spectral embedding and kernel PCA
    Bengio, Y
    Delalleau, O
    Le Roux, N
    Paiement, JF
    Vincent, P
    Ouimet, M
    [J]. NEURAL COMPUTATION, 2004, 16 (10) : 2197 - 2219
  • [2] Generalized kernel framework for unsupervised spectral methods of dimensionality reduction
    Peluffo-Ordonez, Diego H.
    Lee, John Aldo
    Verleysen, Michel
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 171 - 177
  • [3] Supervised Kernel Construction for Unsupervised PCA on Face Recognition
    Zhao, Yang
    Chen, Wen-Sheng
    Pan, Binbin
    Chen, Bo
    [J]. PATTERN RECOGNITION (CCPR 2014), PT II, 2014, 484 : 351 - 359
  • [4] Contextual Kernel and Spectral Methods for Learning the Semantics of Images
    Lu, Zhiwu
    Ip, Horace H. S.
    Peng, Yuxin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1739 - 1750
  • [5] Parametric PCA for unsupervised metric learning
    Levada, Alexandre L. M.
    [J]. PATTERN RECOGNITION LETTERS, 2020, 135 (135) : 425 - 430
  • [6] A weighted kernel PCA formulation with out-of-sample extensions for spectral clustering methods
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 138 - +
  • [7] Intrusion detection system using PCA and kernel PCA methods
    [J]. Chougdali, K. (chougdali@yahoo.fr), 1600, International Association of Engineers (43):
  • [8] Intrusion Detection System Using PCA and Kernel PCA Methods
    Elkhadir, Zyad
    Chougdali, Khalid
    Benattou, Mohammed
    [J]. PROCEEDINGS OF THE MEDITERRANEAN CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGIES 2015 (MEDCT 2015), VOL 2, 2016, 381 : 489 - 497
  • [9] Introduction to Kernel Methods
    Jaekel, F.
    [J]. PERCEPTION, 2013, 42 : 3 - 3
  • [10] Online Unsupervised Kernel Learning Algorithms
    Kuh, Anthony
    Uddin, Muhammad Sharif
    Ng, Phyllis
    [J]. 2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1019 - 1025