ON HARMONIC QUASICONFORMAL MAPPINGS WITH FINITE AREA

被引:0
|
作者
Li, Hong-Ping [1 ]
Zhu, Jian-Feng [1 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
关键词
Harmonic mappings; harmonic quasiconformal mappings; coefficients estimate; Ahlfors-Schwarz lemma; INEQUALITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the class of harmonic K-quasiconformal mappings of the unit disk U with finite Euclidean areas vertical bar f(U)vertical bar(euc). We first give the Schwarz-pick lemma (cf. [8]) for this class of mappings as follows: vertical bar f(z)(z)vertical bar <= root vertical bar f(U)vertical bar(euc)/pi(1 - k(2)) 1/1 - vertical bar z vertical bar, z is an element of U, where k = K-1/K+1. Furthermore, we obtain the sharp coefficient- estimates of this class of mappings. As an application, for harmonic mappings f is an element of S-H(0) with finite vertical bar f(U)vertical bar(euc) we obtain sharp coefficient estimates.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 50 条