Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields

被引:372
|
作者
Yesin, K. Berk [1 ]
Vollmers, Karl [1 ]
Nelson, Bradley J. [1 ]
机构
[1] ETH, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland
来源
关键词
biomedical; microrobotics; wireless microrobot; magnetic microrobot; MEMS; microassembly;
D O I
10.1177/0278364906065389
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper investigates fundamental design, modeling, and control issues related to untethered biomedical microrobots guided inside the human body through external magnetic fields. Proposed areas of application for these microrobots include sensing, diagnosis, and surgical procedures in intraocular cardiovascular, and inner-ear environments. A prototype microrobot and steering system are introduced. Fluid drag experiments performed on the prototype robot show that the 950 x 400 mu m elliptical shape has a spherical equivalent diameter of 477 mu m. Drag forces combined with saturation magnetization (5 x 10(5) A/m) of the prototype indicate that the required magnetic field gradients for application inside the vitreous humor and blood vessels are on the order of 0.7 T/m.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [1] Untethered Microrobot Control in Fluidic Environment using Magnetic Gradients
    Belharet, Karim
    Folio, David
    Ferreira, Antoine
    2012 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES (ISOT), 2012,
  • [2] Inverse modeling of untethered electromagnetic actuators using machine learning
    Turkmen, Gokmen Atakan
    Cetin, Levent
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025, 47 (03) : 516 - 528
  • [3] Electromagnetic fields modeling using GIS
    Lam, KWK
    Au, SZW
    AM/FM INTERNATIONAL CONFERENCE XX, PROCEEDINGS - ENTERING THE MAINSTREAM, 1997, : 229 - 235
  • [4] Modeling and Control of an Untethered Magnetic Gripper
    Mao, Yunxuan
    Yuan, Sishen
    Wang, Jiaole
    Zhang, Jinmin
    Song, Shuang
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7274 - 7280
  • [5] Computer modeling of distribution of electromagnetic fields in the environment of MATLAB/SIMULINK
    Usmanov, R. N.
    Allamuratova, Z. J.
    2017 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND COMMUNICATIONS TECHNOLOGIES (ICISCT) - APPLICATIONS, TRENDS AND OPPORTUNITIES, 2017,
  • [6] Simulating and modeling electromagnetic fields using symbolic computations
    Onbilgin, G
    Ari, N
    Ozgonenel, O
    2003 IEEE International Symposium on Electromagnetic Compatibility (EMC), Vols 1 and 2, Symposium Record, 2003, : 1162 - 1165
  • [7] Electromagnetic fields, environment and health
    Cabanes, Pierre-Andre
    ENVIRONNEMENT RISQUES & SANTE, 2010, 9 (05): : 453 - 453
  • [8] Electromagnetic fields in the industrial environment
    Fernandez, J.
    Quijano, A.
    Soriano, M. L.
    Fuster, V.
    SAFETY, RELIABILITY AND RISK ANALYSIS: THEORY, METHODS AND APPLICATIONS, VOLS 1-4, 2009, : 1395 - 1400
  • [9] Untethered: using remote magnetic fields for regenerative medicine
    Chansoria, Parth
    Liu, Hao
    Christiansen, Michael G.
    Schurle-Finke, Simone
    Zenobi-Wong, Marcy
    TRENDS IN BIOTECHNOLOGY, 2023, 41 (05) : 615 - 631
  • [10] Embedding Approach to Modeling Electromagnetic Fields in a Complex Two-Dimensional Environment
    Tijhuis, Anton
    Franchois, Ann
    Geffrin, Jean-Michel
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2018, 2018