Quantum error correction in crossbar architectures

被引:11
|
作者
Helsen, Jonas [1 ]
Steudtner, Mark [1 ,2 ]
Veldhorst, Menno [1 ,3 ]
Wehner, Stephanie [1 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2018年 / 3卷 / 03期
关键词
quantum computing; quantum computing architectures; control of quantum computers; quantum error correction; SPINS;
D O I
10.1088/2058-9565/aab8b0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv: 1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Hybrid quantum error correction in qubit architectures
    Kristensen, Lasse Bjorn
    Kjaergaard, Morten
    Andersen, Christian Kraglund
    Zinner, Nikolaj Thomas
    [J]. PHYSICAL REVIEW A, 2023, 108 (02)
  • [2] Combined error correction techniques for quantum computing architectures
    Byrd, MS
    Lidar, DA
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (08) : 1285 - 1297
  • [3] Online Multiple Error Detection in Crossbar Nano-architectures
    Farazmand, Navid
    Tahoori, Mehdi B.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2009, : 335 - 342
  • [4] CONCURRENT ERROR CORRECTION IN SYSTOLIC ARCHITECTURES
    COSENTINO, RJ
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1988, 7 (01) : 117 - 125
  • [5] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [6] Quantum error correction and quantum computation
    Alber, G
    Delgado, A
    Mussinger, M
    [J]. LASER PHYSICS, 2002, 12 (04) : 742 - 750
  • [7] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    [J]. QUANTUM, 2023, 7
  • [8] Quantum error correction for quantum memories
    Terhal, Barbara M.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [9] Q-CODA: Co-designing Quantum Codes and Architectures for Hardware-Aware Quantum Error Correction
    Thantharate, Pratik
    Thantharate, Anurag
    [J]. QUANTUM COMPUTING: APPLICATIONS AND CHALLENGES, QSAC 2023, 2024, 2 : 134 - 151
  • [10] Error Control Begins to Shape Quantum Architectures
    Edwards, Chris
    [J]. COMMUNICATIONS OF THE ACM, 2023, 66 (01) : 13 - 15