Ant colony optimization and stochastic gradient descent

被引:62
|
作者
Meuleau, N [1 ]
Dorigo, M [1 ]
机构
[1] Free Univ Brussels, IRIDIA, B-1050 Brussels, Belgium
关键词
heuristic; ant system; ant colony optimization; combinatorial optimization; stochastic gradient descent; reinforcement learning;
D O I
10.1162/106454602320184202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 50 条
  • [1] Adaptive gradient descent enabled ant colony optimization for routing problems
    Zhou, Yi
    Li, Weidong
    Wang, Xiaomao
    Qiu, Yimin
    Shen, Weiming
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 70
  • [2] Ant colony optimization for the stochastic loader problem
    Zhao, Peixin
    Wang, Hong
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 1052 - 1056
  • [3] Stochastic gradient descent for optimization for nuclear systems
    Austin Williams
    Noah Walton
    Austin Maryanski
    Sandra Bogetic
    Wes Hines
    Vladimir Sobes
    [J]. Scientific Reports, 13
  • [4] Stochastic gradient descent for wind farm optimization
    Quick, Julian
    Rethore, Pierre-Elouan
    Pedersen, Mads Molgaard
    Rodrigues, Rafael Valotta
    Friis-Moller, Mikkel
    [J]. WIND ENERGY SCIENCE, 2023, 8 (08) : 1235 - 1250
  • [5] Stochastic Chebyshev Gradient Descent for Spectral Optimization
    Han, Insu
    Avron, Haim
    Shin, Jinwoo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Stochastic gradient descent for optimization for nuclear systems
    Williams, Austin
    Walton, Noah
    Maryanski, Austin
    Bogetic, Sandra
    Hines, Wes
    Sobes, Vladimir
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] ON THE PRIVACY OF NOISY STOCHASTIC GRADIENT DESCENT FOR CONVEX OPTIMIZATION
    Altschuler, Jason M.
    Bok, Jinho
    Talwar, Kunal
    [J]. SIAM JOURNAL ON COMPUTING, 2024, 53 (04) : 969 - 1001
  • [8] Comparison of the Stochastic Gradient Descent Based Optimization Techniques
    Yazan, Ersan
    Talu, M. Fatih
    [J]. 2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [9] BAYESIAN STOCHASTIC GRADIENT DESCENT FOR STOCHASTIC OPTIMIZATION WITH STREAMING INPUT DATA
    Liu, Tianyi
    Lin, Yifan
    Zhou, Enlu
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 389 - 418
  • [10] Stochastic Gradient Descent on a Tree: an Adaptive and Robust Approach to Stochastic Convex Optimization
    Vakili, Sattar
    Salgia, Sudeep
    Zhao, Qing
    [J]. 2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 432 - 438