Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model

被引:135
|
作者
Wolf, Eric T. [1 ]
机构
[1] Univ Colorado, Dept Atmospher & Ocean Sci, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
astrobiology; planets and satellites: atmospheres; planets and satellites: terrestrial planets; TERRESTRIAL PLANETS; MOIST GREENHOUSE; INNER EDGE; ZONE; SENSITIVITY; EXOPLANETS; RUNAWAY; STARS;
D O I
10.3847/2041-8213/aa693a
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The TRAPPIST-1 system provides an extraordinary opportunity to study multiple terrestrial extrasolar planets and their atmospheres. Here, we use the National Center for Atmospheric Research Community Atmosphere Model version 4 to study the possible climate and habitability of the planets in the TRAPPIST-1 system. We assume the worlds are ocean-covered, with atmospheres composed of N-2, CO2, and H2O, and with orbital and geophysical properties defined from observation. Model results indicate that the inner three planets (b, c, and d) presently reside interior to the inner edge of the traditional liquid water habitable zone. Thus, if water ever existed on the inner planets, they would have undergone a runaway greenhouse and lost their water to space, leaving them dry today. Conversely, the outer three planets (f, g, and h) fall beyond the maximum CO2 greenhouse outer edge of the habitable zone. Model results indicate that the outer planets cannot be warmed, despite having as much as 30 bar CO2 atmospheres, instead entering a snowball state. The middle planet (e) represents the best chance for a presently habitable ocean-covered world in the TRAPPIST-1 system. Planet e can maintain at least some habitable surface area with 0-2 bar CO2, depending on the background N-2 content. Near-present-day Earth surface temperatures can be maintained for an ocean-covered planet e with either 1 bar N-2 + 0.4 bar CO2, or a 1.3 bar pure CO2 atmosphere.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model (vol 839, L1, 2017)
    Wolf, Eric T.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2018, 855 (01)
  • [2] UV surface habitability of the TRAPPIST-1 system
    O'Malley-James, Jack T.
    Kaltenegger, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (01) : L26 - L30
  • [3] Tidal heating and the habitability of the TRAPPIST-1 exoplanets
    Dobos, Vera
    Barr, Amy C.
    Kiss, Laszlo L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 624
  • [4] The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability
    Papaloizou, J. C. B.
    Szuszkiewicz, Ewa
    Terquem, Caroline
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (04) : 5032 - 5056
  • [5] Atmospheric escape from the TRAPPIST-1 planets and implications for habitability
    Dong, Chuanfei
    Jin, Meng
    Lingam, Manasvi
    Airapetian, Vladimir S.
    Ma, Yingjuan
    van der Holst, Bart
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (02) : 260 - 265
  • [6] On the Age of the TRAPPIST-1 System
    Burgasser, Adam J.
    Mamajek, Eric E.
    [J]. ASTROPHYSICAL JOURNAL, 2017, 845 (02):
  • [7] Surface and Oceanic Habitability of Trappist-1 Planets under the Impact of Flares
    Estrela, Raissa
    Palit, Sourav
    Valio, Adriana
    [J]. ASTROBIOLOGY, 2020, 20 (12) : 1465 - 1475
  • [8] A brief history of the TRAPPIST-1 system
    Ducrot, Elsa
    [J]. Bulletin de la Societe Royale des Sciences de Liege, 2021, 90 : 22 - 34
  • [9] A Deep Radio Limit for the TRAPPIST-1 System
    Pineda, J. Sebastian
    Hallinan, Gregg
    [J]. ASTROPHYSICAL JOURNAL, 2018, 866 (02):
  • [10] MIXING OF PLANETESIMALS IN THE TRAPPIST-1 EXOPLANETARY SYSTEM
    Ipatov, S. I.
    Vernadsky, V. I.
    [J]. METEORITICS & PLANETARY SCIENCE, 2022, 57