The presence of the mosquito-borne flavivirus species West Nile virus (WNV) and Wesselsbron virus (WESSV) in southern Africa is well established; however, their true prevalence remains unknown. To date, the presence of tick-borne flaviviruses has not been confirmed in this region. Serological assays using reagents that can be handled in a biosafety level 2 or lower facility were developed and evaluated for the detection and differentiation of tick-and mosquito-borne flaviviruses in the Free State province of South Africa. A total of 2393 serum samples from a variety of species including humans, cattle, and sheep were tested using Kunjin virus (KUNV) cell lysate antigen for the detection of anti-flavivirus antibodies in an indirect immunoglobulin G (IgG) enzyme-linked immonosorbent assay (ELISA). To further differentiate positive reactors on the KUNV assay for antibodies against tick-or mosquito-borne flaviviruses, recombinant envelope domain III (r-EDIII) proteins of Langat virus (LGTV), WNV, and WESSV were expressed in a bacterial expression system and used in ELISA. A total of 722 samples were positive using the KUNV assay, of which 71, 457, and 431 were positive using the r-LGTVEDIII, r-WNVEDIII, and r-WESSVEDIII assays, respectively. A total of 70 samples were reactive using the KUNV assay but not using any of the other assays, suggesting that there are possibly other flaviviruses circulating in the Free State province for which specific r-EDIII assays were not available. Collectively, the results suggest a strong presence of flaviviruses co-circulating in the Free State province with an abundance of mosquito-borne flaviviruses. There is evidence suggesting the presence of tick-borne flaviviruses, but it has yet to be confirmed. The EDIII protein is a useful tool that can be used in the detection and differentiation of flaviviruses in resource-limited laboratories, but virus neutralization assays are suggested for accurate confirmation of results.