The Kadec-Pelczynski-Rosenthal subsequence splitting lemma for JBW*-triple preduals

被引:4
|
作者
Peralta, Antonio M. [1 ]
Pfitzner, Hermann [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Orleans, F-45067 Orleans 2, France
关键词
Kadec-Pelczynski-Rosenthal subsequence splitting lemma; JBW*-triples; weak compactness; uniform integrability; L-embedded Banach spaces; C-STAR-ALGEBRAS; INNER IDEALS; BANACH; THEOREM; DERIVATIONS; PROJECTIONS; SUBSPACES; SPACES;
D O I
10.4064/sm227-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any bounded sequence in an L-1-space admits a subsequence which can be written as the sum of a sequence of pairwise disjoint elements and a sequence which forms a uniformly integrable or equiintegrable (equivalently, a relatively weakly compact) set. This is known as the Kadec-Pelczynski-Rosenthal subsequence splitting lemma and has been generalized to preduals of von Neuman algebras and of JBW*-algebras. In this note we generalize it to JBW*-triple preduals.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 1 条
  • [1] A KADEC-PELCZYNSKI DICHOTOMY-TYPE THEOREM FOR PREDUALS OF JBW*-ALGEBRAS
    Fernandez-Polo, Francisco J.
    Peralta, Antonio M.
    Isabel Ramirez, Maria
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 208 (01) : 45 - 78