Zn2+ proteins pervade metabolism and are essential for gene expression. However, no proteins have been ascribed the central roles of Zn2+ donation to, or removal from, metalloproteins, or Zn2+ storage in vegetative plant tissue. In animals, such functions have been proposed for metallothioneins. Plants contain multiple metallothionein-like genes but their predicted products, which differ significantly from animal metallothioneins, remain to be isolated from vegetative tissue and their roles are uncertain. The type 2 metallothionein-like gene from Arabidopsis, MT2, was expressed under the control of Zn2+ -responsive elements derived from the cyanobacterial metallothionein divergon, smt. Zn2+ -dependent expression of MT2 transcripts in Synechococcus PCC 7942 was confirmed by northern analysis. The Ambidopsis MT2 gene partly complemented Zn2+ hypersensitivity in mutants of Synechococcus PCC 7942 which are functionally deficient in an endogenous Zn2+ -metallothionein gene, smtA. MT2 was also expressed as a recombinant fusion protein in Escherichia coli, purified and shown to bind Zn2+ in vitro. The mean pH of half displacement of Zn2+ from MT2 was estimated to be 5.05. This suggests that MT2 has a greater affinity for Zn2+ than phytochelatins. The results presented here reveal that MT2 is capable of binding Zn2+ in vitro, conferring tolerance to elevated [Zn2+] in vivo within cyanobacteria and is likely to compete with other polypeptides for cellular Zn2+ in planta.