Internal solitary waves

被引:0
|
作者
Grimshaw, R [1 ]
机构
[1] Univ Loughborough, Dept Math Sci, Loughborough, Leics, England
来源
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Internal solitary waves are an ubiquitous feature of the coastal ocean and atmospheric boundary layer. We will review the use of the variable coefficient Korteweg de Vries equation, and the extended Korteweg de-Vries equation (that is, with an extra cubic nonlinear term), to model these waves. We will describe both the adiabatic theories for slowly-varying solitary waves, and the results from numerical simulations. Particular emphasis will be placed on the consequences when the coefficients of either of the nonlinear terms undergoes a sign change, which may lead to a radical and non-adiabatic change of the wave-form.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [1] INTERNAL SOLITARY WAVES
    WEIDMAN, PD
    VELARDE, MG
    [J]. STUDIES IN APPLIED MATHEMATICS, 1992, 86 (02) : 167 - 184
  • [2] INTERNAL SOLITARY WAVES
    MILES, JW
    [J]. TELLUS, 1979, 31 (05): : 456 - 462
  • [3] THE STABILITY OF INTERNAL SOLITARY WAVES
    BENNETT, DP
    BROWN, RW
    STANSFIELD, SE
    STROUGHAIR, JD
    BONA, JL
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 94 (SEP) : 351 - 379
  • [4] STABILITY OF INTERNAL SOLITARY WAVES
    STANSFIELD, SE
    BROWN, RW
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 588 - 588
  • [5] Internal modes of solitary waves
    Kivshar, YS
    Pelinovsky, DE
    Cretegny, T
    Peyrard, M
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5032 - 5035
  • [6] Shoaling internal solitary waves
    Sutherland, B. R.
    Barrett, K. J.
    Ivey, G. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (09) : 4111 - 4124
  • [7] Are solitary internal waves solitons?
    Lamb, KG
    [J]. STUDIES IN APPLIED MATHEMATICS, 1998, 101 (03) : 289 - 308
  • [8] CHARACTERISTICS OF INTERNAL SOLITARY WAVES
    KEULEGAN, GH
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1953, 51 (03): : 133 - 140
  • [9] Are solitary internal waves solitons?
    Department of Applied Mathematics, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
    [J]. Stud. Appl. Math., 3 (289-308):
  • [10] On the interaction of short linear internal waves with internal solitary waves
    Xu, Chengzhu
    Stastna, Marek
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2018, 25 (01) : 1 - 17