Digital backpropagation accounting for polarization-mode dispersion

被引:27
|
作者
Czegledi, Cristian B. [1 ]
Liga, Gabriele [2 ]
Lavery, Domanic [2 ]
Karlsson, Magnus [3 ]
Agrell, Erik [1 ]
Savory, Seb J. [4 ]
Bayvel, Polina [2 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[2] UCL, Dept Elect & Elect Engn, Opt Networks Grp, London WC1E 7JE, England
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
来源
OPTICS EXPRESS | 2017年 / 25卷 / 03期
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
NONLINEARITY COMPENSATION; TRANSMISSION; FIBER; PMD; SYSTEMS;
D O I
10.1364/OE.25.001903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital backpropagation (DBP) is a promising digital-domain technique to mitigate Kerr-induced nonlinear interference. While it successfully removes deterministic signal-signal interactions, the performance of ideal DBP is limited by stochastic effects, such as polarizationmode dispersion (PMD). In this paper, we consider an ideal full-field DBP implementation and modify it to additionally account for PMD; reversing the PMD effects in the backward propagation by passing the reverse propagated signal also through PMD sections, which concatenated equal the inverse of the PMD in the forward propagation. These PMD sections are calculated analytically at the receiver based on the total accumulated PMD of the link estimated from channel equalizers. Numerical simulations show that, accounting for nonlinear polarization-related interactions in the modified DBP algorithm, additional signal-to-noise ratio gains of 1.1 dB are obtained for transmission over 1000 km. (C) 2017 Optical Society of America
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 50 条
  • [1] Modified Digital Backpropagation Accounting for Polarization-Mode Dispersion
    Czegledi, Cristian B.
    Liga, Gabriele
    Lavery, Domanic
    Karlsson, Magnus
    Agrell, Erik
    Savory, Seb J.
    Bayvel, Polina
    2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2017,
  • [2] Understanding polarization-mode dispersion
    Rudkevich, E
    Pan, FY
    LASER FOCUS WORLD, 2000, : 39 - +
  • [3] MEASUREMENT OF POLARIZATION-MODE DISPERSION
    HEFFNER, BL
    HERNDAY, PR
    HEWLETT-PACKARD JOURNAL, 1995, 46 (01): : 27 - 33
  • [4] Fibers with low polarization-mode dispersion
    Nolan, DA
    Chen, X
    Li, MJ
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (04) : 1066 - 1077
  • [5] Polarization-mode dispersion of a circulating loop
    Lakoba, TI
    Dorrer, C
    Maywar, DN
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (02) : 243 - 248
  • [6] Importance sampling for polarization-mode dispersion
    Biondini, G
    Kath, WL
    Menyuk, CR
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (03) : 310 - 312
  • [7] Emulation and inversion of polarization-mode dispersion
    Kogelnik, H
    Nelson, LE
    Gordon, JP
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (02) : 482 - 495
  • [8] Impact of polarization controllers in polarization-mode dispersion emulators
    Djupsjöbacka, A.
    Journal of Optical Communications, 2002, 23 (05) : 195 - 199
  • [9] Autocorrelation function of the polarization-mode dispersion vector
    Karlsson, M
    Brentel, J
    OPTICS LETTERS, 1999, 24 (14) : 939 - 941
  • [10] Polarization-mode dispersion compensation in WDM systems
    Khosravani, R
    Havstad, SA
    Song, YW
    Ebrahimi, P
    Willner, AE
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (12) : 1370 - 1372