Finite integration method for partial differential equations
被引:39
|
作者:
Wen, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Sch Engn & Mat Sci, London E1 4NS, EnglandUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Wen, P. H.
[1
]
Hon, Y. C.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Hon, Y. C.
[2
,3
]
Li, M.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Li, M.
[3
]
Korakianitis, T.
论文数: 0引用数: 0
h-index: 0
机构:
St Louis Univ, Pk Coll Engn Aviat & Technol, St Louis, MO 63103 USAUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Korakianitis, T.
[4
]
机构:
[1] Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
[4] St Louis Univ, Pk Coll Engn Aviat & Technol, St Louis, MO 63103 USA
A finite integration method is proposed in this paper to deal with partial differential equations in which the finite integration matrices of the first order are constructed by using both standard integral algorithm and radial basis functions interpolation respectively. These matrices of first order can directly be used to obtain finite integration matrices of higher order. Combining with the Laplace transform technique, the finite integration method is extended to solve time dependent partial differential equations. The accuracy of both the finite integration method and finite difference method are demonstrated with several examples. It has been observed that the finite integration method using either radial basis function or simple linear approximation gives a much higher degree of accuracy than the traditional finite difference method. (C) 2013 Elsevier Inc. All rights reserved.
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Li, M.
Tian, Z. L.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Tian, Z. L.
Hon, Y. C.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Hon, Y. C.
Chen, C. S.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USATaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Chen, C. S.
Wen, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Sch Engn & Mat Sci, London E1 4NS, EnglandTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Li, M.
Chen, C. S.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USAUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Chen, C. S.
Hon, Y. C.
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaUniv London, Sch Engn & Mat Sci, London E1 4NS, England
Hon, Y. C.
Wen, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Sch Engn & Mat Sci, London E1 4NS, England
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaUniv London, Sch Engn & Mat Sci, London E1 4NS, England
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Lei, Min
Liu, Li
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R ChinaTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
Liu, Li
Wen, P. H.
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Inst Aerosp, Nanchang 330031, Peoples R China
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, EnglandTaiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China