Controllability of Fractional Evolution Inclusions with Noninstantaneous Impulses

被引:2
|
作者
Wang, JinRong [1 ]
Ibrahim, A. G. [2 ]
O'Regan, D. [3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] King Faisal Univ, Dept Math, Fac Sci, Al Ahasa 31982, Al Ahasa, Saudi Arabia
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
基金
中国国家自然科学基金;
关键词
controllability; fractional evolution inclusions; noninstantaneous impulses; APPROXIMATE CONTROLLABILITY; DIFFERENTIAL-EQUATIONS; CAUCHY-PROBLEMS; SYSTEMS; EXISTENCE;
D O I
10.1515/ijnsns-2017-0090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is concerned with the controllability issue of fractional semilinear evolution inclusions with noninstantaneous impulses. Using weak sequentially closed graph operators, we establish sufficient conditions to guarantee controllability results. We do not assume that the semigroup is compact or we do not assume a compactness-type condition on the multivalued function. Finally, two examples are given to illustrate our theory.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 50 条
  • [1] ILC method for solving approximate controllability of fractional differential equations with noninstantaneous impulses
    Liu, Shengda
    Debbouche, Amar
    Wang, JinRong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 343 - 355
  • [2] Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions
    Wang, JinRong
    Ibrahim, Ahmed Gamal
    O'Regan, Donal
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (06): : 958 - 984
  • [3] Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses and of order α ∈(1,2)
    Wang, JinRong
    Ibrahim, Ahmed G.
    O'Regan, Donal
    Elmandouh, Adel A.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (05) : 593 - 605
  • [4] CONTROLLABILITY FOR FRACTIONAL EVOLUTION INCLUSIONS WITHOUT COMPACTNESS
    Zhou, Yong
    Vijayakumar, V.
    Murugesu, R.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (04): : 507 - 524
  • [5] Approximate controllability of fractional evolution inclusions with damping
    Li, Xuemei
    Liu, Xinge
    Tang, Meilan
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 148
  • [6] CONTROLLABILITY OF HILFER TYPE FRACTIONAL EVOLUTION NEUTRAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH NON-INSTANTANEOUS IMPULSES
    Sanjay, K.
    Balasubramaniam, P.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 600 - 625
  • [7] Global attracting solutions to Hilfer fractional differential inclusions of Sobolev type with noninstantaneous impulses and nonlocal conditions
    Wang, JinRong
    Ibrahim, Ahmed Gamal
    ORegan, Donal
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (05): : 775 - 803
  • [8] On the Controllability of Impulsive Fractional Evolution Inclusions in Banach Spaces
    Liu, Zhenhai
    Li, Xiuwen
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 167 - 182
  • [9] On the Controllability of Impulsive Fractional Evolution Inclusions in Banach Spaces
    Zhenhai Liu
    Xiuwen Li
    [J]. Journal of Optimization Theory and Applications, 2013, 156 : 167 - 182
  • [10] Existence and exact controllability of fractional evolution inclusions with damping
    Li, Xiuwen
    Liu, Zhenhai
    Tisdell, C. C.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4548 - 4559