Blind image noise level estimation using texture-based eigenvalue analysis

被引:9
|
作者
Huang, Xiaotong [1 ,2 ]
Chen, Li [1 ,2 ]
Tian, Jing [1 ,2 ]
Zhang, Xiaolong [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise level estimation; Eigenvalue analysis; Image denoising;
D O I
10.1007/s11042-015-2452-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Blind noisy image estimation is useful in many visual processing systems. The challenge lies in accurately estimating the image noise level without any priori information of the image. To tackle this challenge, an iterative texture-based eigenvalue analysis approach is proposed in this paper. The proposed approach utilizes the eigenvalue analysis to mathematically derive a new noise level estimator based on weak-textured image patches. Furthermore, a new texture strength measure is proposed to adaptively select weak-textured patches from the noisy image. Experimental results are provided to demonstrate that the proposed image noise level estimation approach yields superior accuracy and stability performance to that of conventional noise level estimation approaches, so that to improve the performance of image denoising algorithm.
引用
收藏
页码:2713 / 2724
页数:12
相关论文
共 50 条
  • [1] Blind image noise level estimation using texture-based eigenvalue analysis
    Xiaotong Huang
    Li Chen
    Jing Tian
    Xiaolong Zhang
    [J]. Multimedia Tools and Applications, 2016, 75 : 2713 - 2724
  • [2] Texture-based CT Image Analysis of Asthma
    Hariharan, Harishwaran
    Wenzel, Sally
    Zheng, Bin
    Whiting, Bruce
    Pu, Jiantao
    Gur, David
    Leader, J. Ken
    [J]. MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672
  • [3] Efficient Noise-Level Estimation Based on Principal Image Texture
    Jiang, Ping
    Wang, Quan
    Wu, Jiang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 1987 - 1999
  • [4] Noise level estimation based on eigenvalue learning
    Hanxin Liu
    Zhuang Fang
    Wenjing Lu
    [J]. Multimedia Tools and Applications, 2024, 83 : 44503 - 44525
  • [5] Noise level estimation based on eigenvalue learning
    Liu, Hanxin
    Fang, Zhuang
    Lu, Wenjing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44503 - 44525
  • [6] Texture-based image segmentation using neutrosophic clustering
    Koundal, Deepika
    [J]. IET IMAGE PROCESSING, 2017, 11 (08) : 640 - 645
  • [7] Texture-Based Segmentation Using Image Fidelity Indexes
    Juca, V. M.
    Mello, C. A. B.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2011, 9 (03) : 415 - 420
  • [8] Natural image noise level estimation based on local statistics for blind noise reduction
    Asem Khmag
    Abd Rahman Ramli
    S. A. R. Al-haddad
    Noraziahtulhidayu Kamarudin
    [J]. The Visual Computer, 2018, 34 : 575 - 587
  • [9] Natural image noise level estimation based on local statistics for blind noise reduction
    Khmag, Asem
    Ramli, Abd Rahman
    Al-Haddad, S. A. R.
    Kamarudin, Noraziahtulhidayu
    [J]. VISUAL COMPUTER, 2018, 34 (04): : 575 - 587
  • [10] TEXTURE CHARACTERIZATION AND TEXTURE-BASED IMAGE PARTITIONING USING 2-DIMENSIONAL LINEAR-ESTIMATION TECHNIQUES
    DEGUCHI, K
    MORISHITA, I
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1978, 27 (08) : 739 - 745