Big data and data repurposing - using existing data to answer new questions in vascular dementia research

被引:21
|
作者
Doubal, Fergus N. [1 ]
Ali, Myzoon [2 ,3 ]
Batty, G. David [4 ]
Charidimou, Andreas [5 ]
Eriksdotter, Maria [6 ,7 ]
Hofmann-Apitius, Martin [8 ]
Kim, Yun-Hee [9 ]
Levine, Deborah A. [10 ,11 ]
Mead, Gillian [12 ]
Mucke, Hermann A. M. [13 ]
Ritchie, Craig W. [14 ]
Roberts, Charlotte J. [15 ]
Russ, Tom C. [14 ,16 ]
Stewart, Robert [17 ]
Whiteley, William [12 ]
Quinn, Terence J. [18 ]
机构
[1] Univ Edinburgh, Ctr Clin Brain Sci, Stroke Assoc Garfield Weston Fdn, Edinburgh, Midlothian, Scotland
[2] Univ Glasgow, Inst Cardiovasc Sci, Glasgow, Lanark, Scotland
[3] Univ Glasgow, Inst Med Sci, Glasgow, Lanark, Scotland
[4] UCL, Dept Epidemiol & Publ Hlth, Epidemiol, London, England
[5] Harvard Med Sch, Massachusetts Gen Hosp, Stroke Res Ctr, J Philip Kistler Stroke Res Ctr,Dept Neurol, Boston, MA 02114 USA
[6] Karolinska Univ Hosp, Div Clin Geriatr, Dept Neurobiol Care Sci & Soc, Karolinska Inst, Stockholm, Sweden
[7] Karolinska Univ Hosp, Dept Geriatr Med, Stockholm, Sweden
[8] Schloss Birlinghoven, Fraunhofer Inst Algorithms & Sci Comp, St Augustin, Germany
[9] Sungkyunkwan Univ, Sch Med, Dept Phys & Rehabil Med, Heart Vasc & Stroke Inst,Samsung Med Ctr,Ctr Prev, Seoul, South Korea
[10] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[11] Univ Michigan, VA Ann Arbor Healthcare Syst, Ann Arbor, MI 48109 USA
[12] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[13] HM Pharma Consultancy, Vienna, Austria
[14] Univ Edinburgh, Ctr Dementia Prevent, Edinburgh, Midlothian, Scotland
[15] ICHOM Int Consortium Hlth Outcomes Measurement, Hamilton House,Mabledon Pl, London WC1H 9BB, England
[16] Univ Edinburgh, Alzheimer Scotland Dementia Res Ctr, Edinburgh, Midlothian, Scotland
[17] Kings Coll London, Inst Psychiat Psychol & Neurosci, South London & Maudsley NHS Fdn Trust, London, England
[18] Univ Glasgow, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland
关键词
Big data; Data; Clinical Trials; Cohort studies; Dementia; Electronic health records; Systematic review; Registries; Vascular dementia; COGNITIVE DECLINE; CLINICAL-TRIALS; COHORT PROFILE; MORTALITY; STROKE; RISK; METAANALYSIS; SURVIVAL; CANCER; WASTE;
D O I
10.1186/s12883-017-0841-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group's experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Big data and data repurposing - using existing data to answer new questions in vascular dementia research
    Fergus N. Doubal
    Myzoon Ali
    G. David Batty
    Andreas Charidimou
    Maria Eriksdotter
    Martin Hofmann-Apitius
    Yun-Hee Kim
    Deborah A. Levine
    Gillian Mead
    Hermann A. M. Mucke
    Craig W. Ritchie
    Charlotte J. Roberts
    Tom C. Russ
    Robert Stewart
    William Whiteley
    Terence J. Quinn
    [J]. BMC Neurology, 17
  • [2] Secondary Data Analysis: Using existing data to answer new questions
    Kelly, Michelle M.
    Martin-Peters, Tasha
    Farber, Jessica Strohm
    [J]. JOURNAL OF PEDIATRIC HEALTH CARE, 2024, 38 (04) : 616 - 619
  • [3] Using Big Data in eye research to answer important scientific questions
    Alves, Monica
    Forschini, Rosalia Antunes
    Schor, Paulo
    [J]. ARQUIVOS BRASILEIROS DE OFTALMOLOGIA, 2019, 82 (03) : V - VI
  • [4] Questionomics: Using Big Data to Ask and Answer Big Questions
    Kliebenstein, Daniel J.
    [J]. PLANT CELL, 2019, 31 (07): : 1404 - 1405
  • [5] Leveraging BIG Data from BIG Databases to Answer BIG Questions
    Whittier, Joanna
    Sievert, Nick
    Loftus, Andrew
    Defilippi, Julie M.
    Krogman, Rebecca M.
    Ojala, Jeffrey
    Litts, Thom
    Kopaska, Jeff
    Eiden, Nicole
    [J]. FISHERIES, 2016, 41 (07) : 417 - 419
  • [6] Publicly Available Data and Pediatric Mental Health: Leveraging Big Data to Answer Big Questions for Children
    Blair, Lisa M.
    [J]. JOURNAL OF PEDIATRIC HEALTH CARE, 2016, 30 (01) : 84 - 87
  • [7] Using data from patient registries to answer important research questions
    Rached, Samia
    Patino, Cecilia M.
    Ferreira, Juliana
    [J]. JORNAL BRASILEIRO DE PNEUMOLOGIA, 2024, 50 (03)
  • [8] Big Questions on Big Data
    Oprea, Dumitru
    [J]. REVISTA DE CERCETARE SI INTERVENTIE SOCIALA, 2016, 55 : 112 - 126
  • [9] Big Questions for "Big Data"
    Wears, Robert L.
    Williams, Deborah J.
    [J]. ANNALS OF EMERGENCY MEDICINE, 2016, 67 (02) : 237 - 239
  • [10] Big data, big questions
    Wren, Kathy
    [J]. SCIENCE, 2014, 344 (6187) : 982 - 983