On the rate of convergence in the global central limit theorem for random sums of independent random variables

被引:2
|
作者
Sunklodas, Jonas Kazys [1 ]
机构
[1] Vilnius Univ, Inst Math & Informat, Akad Str 4, LT-08663 Vilnius, Lithuania
关键词
global central limit theorem; random sum; normal approximation; Stein's method; m-dependent random variables; independent random variables; tau-shifted distributions; ASYMPTOTIC NORMALITY; BOUNDS;
D O I
10.1007/s10986-017-9358-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present upper bounds of the integral for 0 ae<currency> l ae<currency> 1 + delta, where 0 < delta ae<currency> 1, I broken vertical bar(x) is a standard normal distribution function, and Z (N) = is the normalized random sum with variance V S (N) > 0 (S (N) = X (1) + center dot center dot center dot + X (N) ) of centered independent random variables X (1) ,X (2) , . . . . The number of summands N is a nonnegative integer-valued random variable independent of X (1) ,X (2) , . . . .
引用
收藏
页码:244 / 258
页数:15
相关论文
共 50 条