The tropical analogue of polar cones

被引:17
|
作者
Gaubert, Stephane [2 ,3 ]
Katz, Ricardo D. [1 ]
机构
[1] Univ Nacl Rosario, CONICET, Inst Matemat Beppo Levi, RA-2000 Rosario, Santa Fe, Argentina
[2] Ecole Polytech, INRIA, F-91128 Palaiseau, France
[3] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
关键词
Max-plus semiring; Max-plus convexity; Tropical convexity; Extremal convexity; B-convexity; Duality; Separation theorem; Farkas lemma; Semimodules; Idempotent spaces; PLUS CONVEX-SETS; MAX; SEPARATION; THEOREM; SYSTEM;
D O I
10.1016/j.laa.2009.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the max-plus or tropical analogue of the notion of polar: the polar of a cone represents the set of linear inequalities satisfied by its elements. We establish an analogue of the bipolar theorem, which characterizes all the inequalities satisfied by the elements of a tropical convex cone. We derive this characterization from a new separation theorem. We also establish variants of these results concerning systems of linear equalities. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:608 / 625
页数:18
相关论文
共 50 条
  • [1] Tropical polar cones, hypergraph transversals, and mean payoff games
    Allamigeon, Xavier
    Gaubert, Stephane
    Katz, Ricardo D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (07) : 1549 - 1574
  • [2] On solidness of polar cones
    Qiu, JH
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 199 - 214
  • [3] On solidness of polar cones
    Qiu J.H.
    [J]. Journal of Optimization Theory and Applications, 2001, 109 (1) : 199 - 214
  • [4] An entanglement analogue in light cones
    Morikoshi, Fumiaki
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (12):
  • [5] Weighted digraphs and tropical cones
    Joswig, Michael
    Loho, Georg
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 : 304 - 343
  • [6] Polytropes and Tropical Eigenspaces: Cones of Linearity
    Ngoc Mai Tran
    [J]. Discrete & Computational Geometry, 2014, 51 : 539 - 558
  • [7] Monomial Tropical Cones for Multicriteria Optimization
    Joswig, Michael
    Loho, Georg
    [J]. 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP (LEGO), 2019, 2070
  • [8] MONOMIAL TROPICAL CONES FOR MULTICRITERIA OPTIMIZATION
    Joswig, Michael
    Loho, Georg
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1172 - 1191
  • [9] Polytropes and Tropical Eigenspaces: Cones of Linearity
    Ngoc Mai Tran
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 539 - 558
  • [10] Moreau-type characterizations of polar cones
    Soltan, Valeriu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 567 : 45 - 62