Nonradial and nonpolytropic astrophysical outflows X. Relativistic MHD rotating spine jets in Kerr metric

被引:7
|
作者
Chantry, L. [1 ]
Cayatte, V. [1 ]
Sauty, C. [1 ]
Vlahakis, N. [2 ]
Tsinganos, K. [2 ]
机构
[1] Univ Paris Diderot, Lab Univers & Theories, Observ Paris PSL, UMR CNRS 8102, F-92190 Meudon, France
[2] Univ Athens, Dept Phys, Sect Astrophys Astron & Mech, Athens 15783, Greece
关键词
black hole physics; magnetohydrodynamics (MHD); relativistic processes; galaxies: jets; RAY BURST OUTFLOWS; WIND-TYPE FLOWS; COLLIMATED OUTFLOWS; MAGNETIC-FIELDS; BLACK-HOLES; ACCRETION; MODEL; MAGNETOHYDRODYNAMICS; SIMULATIONS; GENERATION;
D O I
10.1051/0004-6361/201731793
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and gamma-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future gamma-ray telescope CTA. Aims. In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional selfsimilar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods. The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results. Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions. These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or gamma-ray bursts. In particular, we discuss the relevance of our solutions to modeling the M 87 spine-jet. We study the efficiency of the central black hole spin to collimate a spine-jet and show that the jet power is of the same order as that determined by numerical simulations.
引用
下载
收藏
页数:22
相关论文
共 9 条
  • [1] Nonradial and nonpolytropic astrophysical outflows: X. Relativistic MHD rotating spine jets in Kerr metric
    Sauty, C. (christophe.sauty@obspm.fr), 1600, EDP Sciences (612):
  • [2] Nonradial and nonpolytropic astrophysical outflows - VIII. A GRMHD generalization for relativistic jets
    Meliani, Z
    Sauty, C
    Vlahakis, N
    Tsinganos, K
    Trussoni, E
    ASTRONOMY & ASTROPHYSICS, 2006, 447 (03) : 797 - U25
  • [3] Nonradial and nonpolytropic astrophysical outflows: VIII. A GRMHD generalization for relativistic jets
    Meliani, Z.
    Sauty, C.
    Vlahakis, N.
    Tsinganos, K.
    Trussoni, E.
    Astronomy and Astrophysics, 1600, 447 (03): : 797 - 812
  • [4] Nonradial and nonpolytropic astrophysical outflows VI. Overpressured winds and jets
    Sauty, C. (christophe.sauty@obspm.fr), 1600, EDP Sciences (421):
  • [5] Nonradial and nonpolytropic astrophysical outflows - VI. Overpressured winds and jets
    Sauty, C
    Trussoni, E
    Tsinganos, K
    ASTRONOMY & ASTROPHYSICS, 2004, 421 (03) : 797 - 809
  • [6] NONRADIAL AND NONPOLYTROPIC ASTROPHYSICAL OUTFLOWS .2. TOPOLOGY OF MHD SOLUTIONS WITH FLARING STREAMLINES
    TSINGANOS, K
    SAUTY, C
    ASTRONOMY & ASTROPHYSICS, 1992, 257 (02) : 790 - 806
  • [7] Nonradial and nonpolytropic astrophysical outflows - IV. Magnetic or thermal collimation of winds into jets?
    Sauty, C
    Tsinganos, K
    Trussoni, E
    ASTRONOMY & ASTROPHYSICS, 1999, 348 (01): : 327 - 349
  • [8] NONRADIAL AND NONPOLYTROPIC ASTROPHYSICAL OUTFLOWS .3. A CRITERION FOR THE TRANSITION FROM JETS TO WINDS
    SAUTY, C
    TSINGANOS, K
    ASTRONOMY & ASTROPHYSICS, 1994, 287 (03) : 893 - 926
  • [9] Nonradial and nonpolytropic astrophysical outflows IX. Modeling T Tauri jets with a low mass-accretion rate
    Sauty, C.
    Meliani, Z.
    Lima, J. J. G.
    Tsinganos, K.
    Cayatte, V.
    Globus, N.
    ASTRONOMY & ASTROPHYSICS, 2011, 533