New soliton solutions to the perturbed nonlinear Schrodinger equation by exp(- Φ(ξ))-expansion method

被引:16
|
作者
Arshed, Saima [1 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
来源
OPTIK | 2020年 / 220卷
关键词
Traveling wave solution; exp(- Phi(xi))-expansion method; Soliton; Kerr law; Non-Kerr law; TRAVELING-WAVE SOLUTIONS; GINZBURG-LANDAU EQUATION; OPTICAL SOLITONS; SYSTEM; LAW;
D O I
10.1016/j.ijleo.2020.165123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The perturbed nonlinear Schrodinger equation (PNLSE), used to investigate the dynamics of wave propagation of light in nonlinear optical fibers and planar wave guides is considered in this article. The model is considered in the presence of full nonlinearity and perturbed terms. By using the state-of-the-art integration scheme, exp(- Phi(xi))-expansion method, different structures of explicit solutions such as dark, singular, rational and periodic solitary wave solutions are celebrated. All the newly found solutions are discussed with their existence criteria.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exp (-φ(ξ)) expansion method for soliton solution of nonlinear Schrodinger system
    Pankaj, Ram Dayal
    Kumar, Arun
    Singh, Bhawani
    Meena, Meetha Lal
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (01) : 89 - 97
  • [2] New optical soliton solutions of fractional perturbed nonlinear Schrodinger equation in nanofibers
    Ray, S. Saha
    Das, N.
    [J]. MODERN PHYSICS LETTERS B, 2022, 36 (02):
  • [3] OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL PERTURBED NONLINEAR SCHRODINGER EQUATION
    Ali, Khalid Karam
    Karakoc, Seydi Battal Gazi
    Rezazadeh, Hadi
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 930 - 939
  • [4] The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation
    Yepez-Martinez, Huitzilin
    Pashrashid, Arash
    Francisco Gomez-Aguilar, Jose
    Akinyemi, Lanre
    Rezazadeh, Hadi
    [J]. MODERN PHYSICS LETTERS B, 2022, 36 (08):
  • [5] SOLITON-SOLUTIONS FOR A PERTURBED NONLINEAR SCHRODINGER-EQUATION
    MIHALACHE, D
    TORNER, L
    MOLDOVEANU, F
    PANOIU, NC
    TRUTA, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17): : L757 - L765
  • [6] Using the improved exp(-Φ(ξ)) expansion method to find the soliton solutions of the nonlinear evolution equation
    Yang, Juan
    Feng, Qingjiang
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (03):
  • [7] Some optical soliton solutions to the perturbed nonlinear Schrodinger equation by modified Khater method
    Khater, Mostafa M. A.
    Anwar, Sadia
    Tariq, Kalim U.
    Mohamed, Mohamed S.
    [J]. AIP ADVANCES, 2021, 11 (02)
  • [8] New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity
    Neirameh A.
    [J]. SeMA Journal, 2016, 73 (4) : 309 - 323
  • [9] New solutions for perturbed chiral nonlinear Schrodinger equation
    Aly, E. S.
    Abdelrahman, Mahmoud A. E.
    Bourazza, S.
    Ahmadini, Abdullah Ali H.
    Msmali, Ahmed Hussein
    Askar, Nadia A.
    [J]. AIMS MATHEMATICS, 2022, 7 (07): : 12289 - 12302
  • [10] Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrodinger equation
    Gao, Wei
    Ghanbari, Behzad
    Gunerhan, Hatira
    Baskonus, Haci Mehmet
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (03):