Reliability based topology optimization for continuum structures with local failure constraints

被引:52
|
作者
Luo, Yangjun [1 ]
Zhou, Mingdong [2 ]
Wang, Michael Yu [3 ]
Deng, Zichen [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
[2] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117548, Singapore
关键词
Topology optimization; Stress constraint; Reliability; Enhanced aggregation method; DESIGN OPTIMIZATION; DIMENSION-REDUCTION;
D O I
10.1016/j.compstruc.2014.07.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an effective method for stress constrained topology optimization problems under load and material uncertainties. Based on the Performance Measure Approach (PMA), the optimization problem is formulated as to minimize the objective function under a large number of (stress-related) target performance constraints. In order to overcome the stress singularity phenomenon caused by the combined stress and reliability constraints, a reduction strategy on target reliability index is proposed and utilized together with the epsilon-relaxation approach. Meanwhile, an enhanced aggregation method is employed to aggregate the selected active constraints using a general K S function, which avoids expensive computational cost from the large-scale nature of local failure constraints. Several numerical examples are given to demonstrate the validity of the present method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [1] Reliability-based topology optimization of continuum structures subject to local stress constraints
    da Silva, Gustavo Assis
    Beck, Andre Teofilo
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (06) : 2339 - 2355
  • [2] Reliability-based topology optimization of continuum structures subject to local stress constraints
    Gustavo Assis da Silva
    André Teófilo Beck
    [J]. Structural and Multidisciplinary Optimization, 2018, 57 : 2339 - 2355
  • [3] Topology optimization of continuum structures with local stress constraints
    Duysinx, P
    Bendsoe, MP
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 43 (08) : 1453 - 1478
  • [4] Topology optimization of continuum structures with material failure constraints
    J.T. Pereira
    E.A. Fancello
    C.S. Barcellos
    [J]. Structural and Multidisciplinary Optimization, 2004, 26 : 50 - 66
  • [5] Topology optimization of continuum structures with material failure constraints
    Pereira, JT
    Fancello, EA
    Barcellos, CS
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 26 (1-2) : 50 - 66
  • [6] Topology optimization of continuum structures with local and global stress constraints
    Paris, J.
    Navarrina, F.
    Colominas, I.
    Casteleiro, M.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 39 (04) : 419 - 437
  • [7] Topology optimization of continuum structures with local and global stress constraints
    J. París
    F. Navarrina
    I. Colominas
    M. Casteleiro
    [J]. Structural and Multidisciplinary Optimization, 2009, 39 : 419 - 437
  • [8] Non-probabilistic reliability-based topology optimization of continuum structures considering local stiffness and strength failure
    Wang, Lei
    Xia, Haijun
    Zhang, Xiaoyu
    Lv, Zheng
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 788 - 809
  • [9] Global versus local statement of stress constraints in topology optimization of continuum structures
    Paris, J.
    Navarrina, F.
    Colominas, I.
    Casteleiro, M.
    [J]. COMPUTER AIDED OPTIMUM DESIGN IN ENGINEERING X, 2007, 91 : 13 - +
  • [10] Topology optimization of continuum structures with displacement constraints based on meshless method
    Yang, Xujing
    Zheng, Juan
    Long, Shuyao
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2017, 13 (02) : 311 - 320