Optical and laser performances of a layered ReSe2 saturable absorber for a 2-μm solid laser

被引:12
|
作者
Zhou, Long [1 ]
Duan, Xiaoming [2 ]
Xie, Wenqiang [1 ]
Qi, Tianqi [1 ]
Yang, Yuqiang [1 ]
Yang, Wenlong [1 ]
Yuan, Jie [3 ]
Shen, Yingjie [4 ]
Liang, Hong [5 ]
Li, Linjun [1 ,6 ]
机构
[1] Harbin Univ Sci & Technol, Heilongjiang Prov Key Lab Laser Spect Technol & A, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Tunable Laser Technol, Harbin 15000, Peoples R China
[3] Harbin Med Univ, Sch Med Informat, Daqing Campus, Daqing 163319, Peoples R China
[4] Yantai Univ, Optoelect Informat Sci & Technol, Yantai 264005, Peoples R China
[5] Harbin Univ, Sch Technol, Harbin 150086, Peoples R China
[6] Heilongjiang Inst Technol, Heilongjiang Prov Engn Technol Res Ctr Solid Stat, Harbin 150050, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
PQML; ReSe2; SA; Optical performances;
D O I
10.1016/j.optlastec.2020.106685
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a dispersion solution of rhenium diselenide (ReSe2) was prepared using an ultrasonic decomposition method and prepared for use as a saturable absorber (SA) mirror by spin-coating. The optical characteristics of the ReSe2 SA were characterized to acquire those parameters which were saturated at 2 mu m. A passively mode-locked (PML) Tm:YAG laser with an ReSe2 SA was first demonstrated in an experiment. Under a continuous wave (CW) regime, a 1940-mW output power was achieved at 2013.8 nm with a pump power of 22.4 W. In PML mode, a 320-mW average output power and a 580.5-ps pulse duration at 203.1 MHz were acquired from the PML Tm:YAG laser with an output wavelength of 2012.6 nm, corresponding to a pulse energy of 1.58 nJ and an optical-optical conversion efficiency of 2.2%.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Passively Q-switched ytterbium-doped fiber laser with ReSe2 saturable absorber
    Wang, Na
    Lu, Bao-Le
    Qi, Xin-Yuan
    Jiao, Yang
    Wen, Zeng-Run
    Chen, Hao-Wei
    Bai, Jin-Tao
    OPTICS AND LASER TECHNOLOGY, 2019, 116 : 300 - 304
  • [2] ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride (Tm:YLF) pulse laser
    Li, Chun
    Leng, Yuxin
    Huo, Jinjin
    CHINESE OPTICS LETTERS, 2019, 17 (01)
  • [3] ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride(Tm:YLF) pulse laser
    李春
    冷雨欣
    霍金金
    ChineseOpticsLetters, 2019, 17 (01) : 62 - 65
  • [4] Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser
    Su, Xiancui
    Nie, Hongkun
    Wang, Yiran
    Li, Guoru
    Yan, Bingzheng
    Zhang, Baitao
    Yang, Kejian
    He, Jingliang
    OPTICS LETTERS, 2017, 42 (17) : 3502 - 3505
  • [5] Graphdiyne as a saturable absorber for 2-μm all-solid-state Q-switched laser
    Zu, Yuqian
    Guo, Jia
    Hao, Qianqian
    Zhang, Feng
    Wang, Cong
    Liu, Jie
    Wang, Bing
    SCIENCE CHINA-MATERIALS, 2021, 64 (03) : 683 - 690
  • [6] Watt-Level Continuous-Wave Mode-Locked Nd:YVO4 Laser With ReSe2 Saturable Absorber
    Xue, Yuchen
    Li, Li
    Zhang, Bin
    Wang, Ruoxing
    Cui, Jinhui
    Tian, Fengjun
    Zhang, Jianzhong
    IEEE PHOTONICS JOURNAL, 2020, 12 (05):
  • [7] Zirconium pentatelluride as saturable absorber for 2 μm ultrafast solid-state laser
    Cai, Enlin
    Qi, Chun
    Hu, Xiaohui
    Du, Long
    Hao, Linhong
    Zhang, Shuaiyi
    Lou, Fei
    Wang, Maorong
    Li, Tao
    Wang, Aifeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (11) : 3812 - 3817
  • [8] PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-μm fiber laser
    Liu, Xinxing
    Li, Xiaohui
    Tang, Yulong
    Zhang, Shuaiyi
    OPTICS LETTERS, 2020, 45 (01) : 161 - 164
  • [9] Visualizing Nonlinear Phononics in Layered ReSe2
    Yu, Junhong
    Han, Yadong
    Wang, Longyu
    Xu, Fang
    Zhang, Hang
    Yu, Yuying
    Wu, Qiang
    Hu, Jianbo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (21): : 5178 - 5184
  • [10] Development of 2 μm all-solid-state pulsed laser using a saturable absorber
    He, Xin
    Zhao, Lu
    Wu, Chunting
    Yu, Yongji
    Li, Changqing
    Sun, ShuWei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2023, 65 (11) : 3043 - 3064