Kazhdan-Lusztig polynomials;
Coxeter groups;
Special matchings;
SPECIAL MATCHINGS;
D O I:
10.1016/j.jalgebra.2019.05.038
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The purpose of this work is to provide a common combinatorial framework for some of the analogues and generalizations of Kazhdan-Lusztig R-polynomials that have appeared since the introduction of these remarkable polynomials (e.g., parabolic Kazhdan-Lusztig R-polynomials, Kazhdan-Lusztig R-polynomials of zircons, and Kazhdan-Lusztig-Vogan polynomials for fixed point free involutions). (C) 2019 Elsevier Inc. All rights reserved.
机构:
Univ Roma La Sapienza, Dpto Matemat G Castelnuovo, Ist Nazl Alta Matemat Francesco Severi, I-00135 Rome, ItalyUniv Roma La Sapienza, Dpto Matemat G Castelnuovo, Ist Nazl Alta Matemat Francesco Severi, I-00135 Rome, Italy
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Brenti, Francesco
Marietti, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy