Enumeration of the degree sequences of non-separable graphs and connected graphs

被引:1
|
作者
Rodseth, Oystein J. [1 ]
Sellers, James A. [2 ]
Tverberg, Helge [1 ]
机构
[1] Univ Bergen, Dept Math, NO-5008 Bergen, Norway
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
PARTITIONS;
D O I
10.1016/j.ejc.2008.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1962, S. L. Hakimi proved necessary and sufficient conditions for a given sequence of positive integers d(1), d(2)..... d(n) to be the degree sequence of a non-separable graph or that of a connected graph. Our goal in this note is to Utilize these results to prove closed formulas for the functions d(ns)(2m) and d(c)(2m), the number of degree sequences with degree sum 2m representable by nonseparable graphs and connected graphs (respectively). Indeed, we give both generating function proofs as well as bijective proofs of the following identities: dns(2m) = p(2m) - p(2m - 1) - Sigma(m-2)(j=0)p(j) and d(c)(2m) = p(2m) - p(m - 1) - 2 Sigma(m-2)(j=0)p(j) where p(j) is the number of unrestricted integer partitions of j. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1309 / 1317
页数:9
相关论文
共 50 条
  • [1] Enumeration of the degree sequences of 3-connected graphs and cactus graphs
    Liang, Yueming
    Liu, Bolian
    [J]. ARS COMBINATORIA, 2016, 126 : 249 - 258
  • [2] Non-separable and planar graphs
    Whitney, Hassler
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) : 339 - 362
  • [3] Non-separable and planar graphs
    Whitney, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 : 125 - 127
  • [4] Non-separable detachments of graphs
    Jackson, B
    Jordán, T
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) : 17 - 37
  • [5] Parallel enumeration of degree sequences of simple graphs II
    Ivanyi, Antal
    Lucz, Lorand
    Gombos, Gergo
    Matuszka, Tamas
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2013, 5 (02) : 245 - 270
  • [6] 3-Connected graphs and their degree sequences
    [J]. McLaughlin, Jonathan (jonny_mclaughlin@hotmail.com), 2018, Charles Babbage Research Centre (105):
  • [7] ENUMERATION OF NON-SEPARABLE PLANAR MAPS
    BROWN, WG
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (03): : 526 - &
  • [8] On the ABC index of connected graphs with given degree sequences
    Zhang, Xiu-Mei
    Sun, Yu-Qin
    Wang, Hua
    Zhang, Xiao-Dong
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (02) : 568 - 582
  • [9] On the ABC index of connected graphs with given degree sequences
    Xiu-Mei Zhang
    Yu-Qin Sun
    Hua Wang
    Xiao-Dong Zhang
    [J]. Journal of Mathematical Chemistry, 2018, 56 : 568 - 582
  • [10] ENUMERATION OF CONNECTED INVARIANT GRAPHS
    BENDER, EA
    CANFIELD, ER
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) : 268 - 278