Residual Power Series Method for Solving Nonlinear Reaction-diffusion-convection Problems

被引:3
|
作者
Khader, Maisa [1 ]
DarAssi, Mahmoud H. [1 ]
机构
[1] Princess Sumaya Univ Technol, Dept Basic Sci, Amman, Jordan
来源
关键词
Nonlinear reaction-diffusion-convection equation; Residual power series method; Homotopy perturbation method; Absolute error;
D O I
10.5269/bspm.41741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the residual power series method (RPSM) is applied to one of the most frequently used models in engineering and science, a nonlinear reaction diffusion convection initial value problems. The approximate solutions using the RPSM were compared to the exact solutions and to the approximate solutions using the homotopy analysis method.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] Application of Reduced Differential Transform Method for Solving Nonlinear Reaction-Diffusion-Convection Problems
    Taghavi, A.
    Babaei, A.
    Mohammadpour, A.
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2015, 10 (01): : 162 - 170
  • [2] Multiplicative Control Problems for Nonlinear Reaction-Diffusion-Convection Model
    Brizitskii, R. V.
    Saritskaia, Zh. Yu.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (02) : 379 - 402
  • [3] Multiplicative Control Problems for Nonlinear Reaction-Diffusion-Convection Model
    R.V. Brizitskii
    Zh.Yu. Saritskaia
    [J]. Journal of Dynamical and Control Systems, 2021, 27 : 379 - 402
  • [4] Approximate analytical solutions of the nonlinear reaction-diffusion-convection problems
    Shidfar, A.
    Babaei, A.
    Molabahrami, A.
    Alinejadmofrad, M.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 261 - 268
  • [5] Analysis of Boundary Value and Extremum Problems for a Nonlinear Reaction-Diffusion-Convection Equation
    Brizitskii, R., V
    Bystrova, V. S.
    Saritskaia, Zh Yu
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (05) : 615 - 629
  • [6] On the Stability of Solutions to Control Problems for a Nonlinear Reaction-Diffusion-Convection Model
    Brizitskii, R. V.
    Maksimov, P. A.
    [J]. DIFFERENTIAL EQUATIONS, 2023, 59 (03) : 414 - 427
  • [7] Reaction-diffusion-convection problems in unbounded cylinders
    Texier-Picard, R
    Volpert, V
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1077 - 1082
  • [8] Analysis of the Boundary Value and Control Problems for Nonlinear Reaction-Diffusion-Convection Equation
    Alekseev, Gennady, V
    Brizitskii, Roman, V
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (04): : 452 - 462
  • [9] On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion
    Lu, YG
    Jäger, W
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) : 1 - 21
  • [10] An integral equation formulation for solving reaction-diffusion-convection boundary-value problems
    Valdes-Parada, Francisco J.
    Sales-Cruz, A. Mauricio
    Ochoa-Tapia, Jesus Alberto
    Alvarez-Ramirez, Jose
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2008, 6