KPLS optimization approach using genetic algorithms

被引:6
|
作者
Daniel Mello-Roman, Jorge [1 ]
Hernandez, Adolfo [2 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Madrid 28040, Spain
[2] Univ Complutense Madrid, Fac Comercio & Turismo, Madrid 28003, Spain
关键词
Partial Least Squares Regression; Kernel-based Methods; Cross-validation Method; Genetic Algorithm; LEAST-SQUARES REGRESSION; FEATURE-SELECTION; PLS;
D O I
10.1016/j.procs.2020.03.051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel partial least squares regression (KPLS) is a technique widely used in the construction of predictive models. However, the adjustment of both the parameter of the kernel function and the number of components supposes for the researcher an unavoidable additional task. This paper presents a procedure that optimizes the generalization capacity of KPLS multivariate models using genetic algorithms (GA), selects the values of the kernel function parameter and the number of components for which the value of the cross -validation coefficient Q(cum)(2) is maximum, adds preliminary tests to configure the GA and defines a convergence criterion in terms of dispersion in the estimates. GA has demonstrated a good performance in the task of optimizing KPLS with convergent solutions towards a global optimum. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1153 / 1160
页数:8
相关论文
共 50 条
  • [1] KPLS Optimization With Nature-Inspired Metaheuristic Algorithms
    Mello-Roman, Jorge Daniel
    Hernandez, Adolfo
    IEEE ACCESS, 2020, 8 : 157482 - 157492
  • [2] Global optimization approach using genetic algorithms with zooming
    Sellami, Hichem
    Karray, Fakhri
    Systems Analysis Modelling Simulation, 2000, 37 (03): : 397 - 406
  • [3] A new approach for optimization in image watermarking by using genetic algorithms
    Kumsawat, P
    Attakitmongcol, K
    Srikaew, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (12) : 4707 - 4719
  • [4] New approach to constrained shape optimization using genetic algorithms
    Sharatchandra, MC
    Sen, M
    Gad-el-Hak, M
    AIAA JOURNAL, 1998, 36 (01) : 51 - 61
  • [5] An optimization approach to estimating stability regions using genetic algorithms
    Loop, BP
    Sudhoff, SD
    Zak, SH
    Zivi, EL
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 231 - 236
  • [6] DESIGN AND OPTIMIZATION OF VALVELESS MICROPUMPS BY USING GENETIC ALGORITHMS APPROACH
    Shukur, Aida F. M.
    Chin, Neoh S.
    Norhayati, S.
    Taib, Bibi N.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 (10): : 1293 - 1309
  • [7] Using genetic algorithms for optimization
    Brown, DS
    ANALYTICAL CHEMISTRY, 1996, 68 (21) : A678 - A679
  • [8] A new fuzzy systems design and optimization approach using genetic algorithms
    Cuomo, Pietro
    Di Lascio, Luigi
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1332 - 1337
  • [9] The Approach for Optimization in Watermark Signal of Relational Databases by using Genetic Algorithms
    Meng, Mailing
    Cui, Xinchun
    Cui, Haiting
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 448 - 452
  • [10] An Improved Approach for Class Test Ordering Optimization using Genetic Algorithms
    Czibula, Istvan Gergely
    Czibula, Gabriela
    Marian, Zsuzsanna
    ICSOFT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2017, : 27 - 37