Characterization of homogeneity in orthocomplete atomic effect algebras

被引:6
|
作者
Ji, Wei [1 ,2 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Technol, Guangxi Key Lab Spatial Informat & Geomat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Effect algebra; Homogeneity; Basic decomposition of an element; Atomic decomposition; Sharp element; Smearing of a state; LATTICE EFFECT ALGEBRAS; ELEMENTS; BLOCKS; STATES; SHARP;
D O I
10.1016/j.fss.2013.06.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that homogeneity can be characterized by the decompositions of sharp elements in orthocomplete atomic effect algebras. Especially, an orthocomplete atomic effect algebra is homogeneous, if and only if the non-zero coefficient of an atom in any atomic decomposition of all sharp elements is the same, if and only if the non-zero coefficient of an atom in any atomic decomposition of the unit element is the same, which confirm the name "homogeneous". As an application, we prove the state smearing theorem for orthocomplete atomic homogeneous effect algebras. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [1] Orthocomplete effect algebras
    Jenca, G
    Pulmannová, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2663 - 2671
  • [2] Sharply Orthocomplete Effect Algebras
    Kalina, M.
    Paseka, J.
    Riecanova, Z.
    ACTA POLYTECHNICA, 2010, 50 (05) : 51 - 56
  • [3] Centrally orthocomplete effect algebras
    Foulis, David J.
    Pulmannova, Sylvia
    ALGEBRA UNIVERSALIS, 2010, 64 (3-4) : 283 - 307
  • [4] Centrally orthocomplete effect algebras
    David J. Foulis
    Sylvia Pulmannová
    Algebra universalis, 2010, 64 : 283 - 307
  • [5] Homogeneous orthocomplete effect algebras are covered by MV-algebras
    Niederle, Josef
    Paseka, Jan
    FUZZY SETS AND SYSTEMS, 2013, 210 : 89 - 101
  • [6] Common Generalizations of Orthocomplete and Lattice Effect Algebras
    Tkadlec, Josef
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (12) : 3279 - 3285
  • [7] Note on Generalizations of Orthocomplete and Lattice Effect Algebras
    Josef Tkadlec
    International Journal of Theoretical Physics, 2011, 50 : 3915 - 3918
  • [8] Note on Generalizations of Orthocomplete and Lattice Effect Algebras
    Tkadlec, Josef
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (12) : 3915 - 3918
  • [9] Meager projections in orthocomplete homogeneous effect algebras
    Ji, Wei
    FUZZY SETS AND SYSTEMS, 2018, 339 : 51 - 61
  • [10] Common Generalizations of Orthocomplete and Lattice Effect Algebras
    Josef Tkadlec
    International Journal of Theoretical Physics, 2010, 49 : 3279 - 3285