Progress in heat transfer research for high-temperature solar thermal applications

被引:81
|
作者
Lipinski, Wojciech [1 ]
Abbasi-Shavazi, Ehsan [1 ]
Chen, Jingjing [1 ]
Coventry, Joe [1 ]
Hangi, Morteza [1 ]
Iyer, Siddharth [1 ]
Kumar, Apurv [1 ,2 ]
Li, Lifeng [1 ]
Li, Sha [1 ]
Pye, John [1 ]
Torres, Juan F. [1 ]
Wang, Bo [1 ]
Wang, Ye [1 ]
Wheeler, Vincent M. [3 ]
机构
[1] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
[2] Federat Univ, Sch Engn Informat Technol & Phys Sci, Mt Helen Campus, Ballarat, Vic 3353, Australia
[3] Univ Wisconsin, Dept Engn & Technol, Menomonie, WI 54751 USA
关键词
Heat transfer; Thermal science; Thermal engineering; Solar thermal; Solar chemistry; High temperature; FLUIDIZED-BED REACTOR; HETEROGENEOUS THERMOCHEMICAL DECOMPOSITION; COMPOUND PARABOLIC CONCENTRATOR; FALLING-PARTICLE RECEIVER; OPEN CYLINDRICAL CAVITY; EMITTING-SCATTERING SUSPENSION; TURBULENT NATURAL-CONVECTION; ISOTHERMAL CUBICAL CAVITIES; HIGH-FLUX IRRADIATION; AIR BRAYTON CYCLE;
D O I
10.1016/j.applthermaleng.2020.116137
中图分类号
O414.1 [热力学];
学科分类号
摘要
High-temperature solar thermal energy systems make use of concentrated solar radiation to generate electricity, produce chemical fuels, and drive energy-intensive processing of materials. Heat transfer analyses are essential for system design and optimisation. This article reviews the progress, challenges and opportunities in heat transfer research as applied to high-temperature solar thermal and thermochemical energy systems. The topics discussed include fundamentals of concentrated solar energy collection, convective heat transfer in solar receivers, application of liquid metals as heat transfer media, and heat transfer in non-reacting and reacting two-phase solid-gas systems such as particle-gas flows and gas-saturated porous structures.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Radiation heat transfer enhanced absorber for high temperature solar-thermal applications
    Fang, Zhenggang
    Lu, Chunhua
    Lu, Yi
    Ma, Delin
    Wei, Ling
    Li, Peiwen
    Ni, Yaru
    Tao, Shunyan
    Xu, Zhongzi
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10531 - 10536
  • [2] Experimental Research of High-Temperature Regenerative Heat Transfer
    Mao, Ying
    Jia, Li
    HEAT TRANSFER-ASIAN RESEARCH, 2006, 35 (05): : 359 - 368
  • [3] Research progress of high-temperature thermal barrier coating materials
    Wang J.
    Zhang Y.-X.
    Chong X.-Y.
    Zhang Z.-B.
    Liang X.-B.
    Feng J.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2022, 32 (12): : 3758 - 3779
  • [4] SOLAR-RADIATION HEAT-TRANSFER TO HIGH-TEMPERATURE HEAT CARRIERS
    BILGEN, E
    MECHANICAL ENGINEERING, 1975, 97 (03) : 74 - 74
  • [5] Research Progress and Prospects of Wood High-temperature Heat Treatment Technology
    Cao, Shuai
    Cheng, Shuai
    Cai, Jiabin
    BIORESOURCES, 2022, 17 (02) : 3702 - 3717
  • [6] Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation
    Peng Fei
    Jiang Yonggang
    Feng Jian
    Cai Huafei
    Feng Junzong
    Li Liangjun
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (07) : 673 - 684
  • [7] A review of high-temperature selective absorbing coatings for solar thermal applications
    Xu, Ke
    Du, Miao
    Hao, Lei
    Mi, Jing
    Yu, Qinghe
    Li, Shijie
    JOURNAL OF MATERIOMICS, 2020, 6 (01) : 167 - 182
  • [8] Research on high-temperature heat receiver in concentrated solar radiation system
    Estera, Przenzak
    Grzegorz, Basista
    Paulina, Bargiel
    Mariusz, Filipowicz
    EXPERIMENTAL FLUID MECHANICS 2016 (EFM16 ), 2017, 143
  • [9] Thermal modelling and optimization of heat transfer in a high-temperature theatre luminaire
    Anderson, DE
    Truslove, TE
    Kubie, J
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2003, 217 (09) : 1039 - 1048
  • [10] Repressing high-temperature radiative heat transfer in thermal barrier coatings
    Aziz, Hafiz Sartaj
    Huang, Muzhang
    Li, Zongyuan
    Wan, Chunlei
    Pan, Wei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (05) : 3485 - 3497