Quantum Deep Field: Data-Driven Wave Function, Electron Density Generation, and Atomization Energy Prediction and Extrapolation with Machine Learning

被引:53
|
作者
Tsubaki, Masashi [1 ]
Mizoguchi, Teruyasu [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Koto Ku, 2-3-26 Aomi, Tokyo 1350064, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
30;
D O I
10.1103/PhysRevLett.125.206401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deep neural networks (DNNs) have been used to successfully predict molecular properties calculated based on the Kohn-Sham density functional theory (KS-DFT). Although this prediction is fast and accurate, we believe that a DNN model for KS-DFT must not only predict the properties but also provide the electron density of a molecule. This Letter presents the quantum deep field (QDF), which provides the electron density with an unsupervised but end-to-end physics-informed modeling by learning the atomization energy on a large-scale dataset. QDF performed well at atomization energy prediction, generated valid electron density, and demonstrated extrapolation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Sebastian Avalos
    Willy Kracht
    Julian M. Ortiz
    Mining, Metallurgy & Exploration, 2020, 37 : 1197 - 1212
  • [2] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Avalos, Sebastian
    Kracht, Willy
    Ortiz, Julian M.
    MINING METALLURGY & EXPLORATION, 2020, 37 (04) : 1197 - 1212
  • [3] A data-driven energy performance gap prediction model using machine learning
    Yilmaz, Derya
    Tanyer, Ali Murat
    Toker, Irem Dikmen
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 181
  • [4] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [5] Data-driven prediction of soccer outcomes using enhanced machine and deep learning techniques
    Mills, Ebenezer Fiifi Emire Atta
    Deng, Zihui
    Zhong, Zhuoqing
    Li, Jinger
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [6] Data-driven deep learning prediction of boron-doped graphene work function
    Lu, Yunhua
    Yu, Jintao
    Zhang, Qingwei
    Zhang, Junan
    Zhang, Chao
    Bi, Qiuyan
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [7] Data-driven analysis and machine learning for energy prediction in distributed photovoltaic generation plants: A case study in Queensland, Australia
    Ramos, Lucas
    Colnago, Marilaine
    Casaca, Wallace
    ENERGY REPORTS, 2022, 8 : 745 - 751
  • [8] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [9] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (2A): : 1085 - 1090
  • [10] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (02): : 1085 - 1090