Periodic smoothing splines for FFT-based solvers

被引:6
|
作者
Morin, Leo [1 ]
Brenner, Renald [2 ]
Derrien, Katell [1 ]
Dorhmi, Khaoula [1 ]
机构
[1] HESAM Univ, CNRS, Lab PIMM, Arts & Metiers Inst Technol,Cnam, 151 Blvd Hop, F-75013 Paris, France
[2] Sorbonne Univ, CNRS, UMR 7190, Inst Jean Le Rond Alembert, F-75005 Paris, France
关键词
Fourier transforms; Smoothing splines; Spurious oscillations; Local fields; STATIC-FIELD DISLOCATION; FOURIER-BASED SCHEMES; MECHANICAL RESPONSE; NUMERICAL-METHOD; COMPOSITES; HOMOGENIZATION; TRANSFORMS; OPERATOR;
D O I
10.1016/j.cma.2020.113549
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to develop a periodic smoother based on splines for FFT-based solvers. Spurious oscillations in FFT-based methods are shown to be due to pseudo-spectral differentiation of discontinuous fields. An automatic smoother based on polynomial splines is developed, which permits to add smoothness to initial material properties. The method, which is applied in various problems including conductivity, elasticity and field dislocation mechanics, improves significantly the local fields and reduces spurious oscillations. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] FFT-based solvers for the EFIE on Graphics Processors
    Francavilla, M. A.
    Vipiana, F.
    Vecchi, G.
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [2] A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media
    Mishra, Nachiketa
    Vondrejc, Jaroslav
    Zeman, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 151 - 168
  • [3] A GPU acceleration for FFT-based fast solvers for the Integral Equation
    Francavilla, M. A.
    Attardo, E. A.
    Vipiana, F.
    Vecchi, G.
    PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
  • [4] Periodic smoothing splines
    Kano, Hiroyuki
    Egerstedt, Magnus
    Fujioka, Hiroyuki
    Takahashi, Satoru
    Martin, Clyde
    AUTOMATICA, 2008, 44 (01) : 185 - 192
  • [5] An FFT-based Galerkin method for homogenization of periodic media
    Vondrejc, Jaroslav
    Zeman, Jan
    Marek, Ivo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (03) : 156 - 173
  • [6] FFT-based analysis of periodic structures in microacoustic devices
    Jakoby, B
    Vellekoop, MJ
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (03) : 651 - 656
  • [7] Finite strain FFT-based non-linear solvers made simple
    de Geus, T. W. J.
    Vondrejc, J.
    Zeman, J.
    Peerlings, R. H. J.
    Geers, M. G. D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 412 - 430
  • [8] LIMITS OF PERIODIC SMOOTHING SPLINES
    RAGOZIN, DL
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (01): : 37 - 46
  • [9] FFT-based homogenization on periodic anisotropic translation invariant spaces
    Bergmann, Ronny
    Merkert, Dennis
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 266 - 292
  • [10] STRONG CONSISTENCY OF THE PERIODIC SMOOTHING SPLINES
    刘克俭
    Systems Science and Mathematical Sciences, 1991, (02) : 173 - 185