Fokker-Planck equations for stochastic dynamical systems with symmetric Levy motions

被引:40
|
作者
Gao, Ting [1 ]
Duan, Jinqiao [1 ]
Li, Xiaofan [1 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
基金
美国国家科学基金会;
关键词
Non-Gaussian noise; alpha-stable symmetric Levy motion; Fractional Laplacian operator; Fokker-Planck equation; Maximum principle; Toeplitz matrix; FINITE-DIFFERENCE APPROXIMATIONS; EFFICIENT IMPLEMENTATION; DIFFUSION; DRIVEN; TIME;
D O I
10.1016/j.amc.2016.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fokker-Planck equations for stochastic dynamical systems, with non-Gaussian alpha-stable symmetric Levy motions, have a nonlocal or fractional Laplacian term. This nonlocality is the manifestation of the effect of non-Gaussian fluctuations. Taking advantage of the Toeplitz matrix structure of the time-space discretization, a fast and accurate numerical algorithm is proposed to simulate the nonlocal Fokker-Planck equations on either a bounded or infinite domain. Under a specified condition, the scheme is shown to satisfy a discrete maximum principle and to be convergent. It is validated against a known exact solution and the numerical solutions obtained by using other methods. The numerical results for two prototypical stochastic systems, the Ornstein-Uhlenbeck system and the double-well system are shown. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Fokker-Planck equations for nonlinear dynamical systems driven by non-Gaussian Levy processes
    Sun, Xu
    Duan, Jinqiao
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [2] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [3] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [4] DYNAMICAL ORDERING - APPLICATIONS TO FOKKER-PLANCK EQUATIONS
    ORLOWSKI, A
    WODKIEWICZ, K
    PHYSICAL REVIEW A, 1994, 50 (04): : 3401 - 3408
  • [5] Numerical analysis and applications of Fokker-Planck equations for stochastic dynamical systems with multiplicative α-stable noises
    Zhang, Yanjie
    Wang, Xiao
    Huang, Qiao
    Duan, Jinqiao
    Li, Tingting
    APPLIED MATHEMATICAL MODELLING, 2020, 87 : 711 - 730
  • [6] Numerical Solution of Fokker-Planck Equation for Nonlinear Stochastic Dynamical Systems
    Narayanan, S.
    Kumar, Pankaj
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS AND CONTROL, 2011, 29 : 77 - +
  • [7] STOCHASTIC CHAOS IN A CLASS OR FOKKER-PLANCK EQUATIONS
    MILLONAS, MM
    REICHL, LE
    PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3125 - 3128
  • [8] FOKKER-PLANCK EQUATIONS FOR STOCHASTIC-PROCESSES
    AGARWAL, GS
    LECTURE NOTES IN PHYSICS, 1983, 184 : 30 - 36
  • [9] A stochastic simulation method for Fokker-Planck equations
    Yoshida, T
    Yanagita, S
    NUMERICAL ASTROPHYSICS, 1999, 240 : 399 - 400
  • [10] INSTANTONS IN THE DYNAMICAL EVOLUTION OF FOKKER-PLANCK SYSTEMS
    SRINIVASAN, V
    LECTURE NOTES IN PHYSICS, 1983, 184 : 77 - 82