Sharp bounds for Neuman-Sandor's mean in terms of the root-mean-square

被引:7
|
作者
Jiang, Wei-Dong [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Weihai Vocat Coll, Dept Informat Engn, Weihai City 264210, Shandong, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Dept Math, Coll Sci, Tianjin 300387, Peoples R China
关键词
Bound; Seiffert's mean; Root-mean-square; Neuman-Sandor's mean; Inequality;
D O I
10.1007/s10998-014-0057-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors find sharp bounds for Neuman-Sandor's mean in terms of the root-mean-square.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 50 条
  • [1] SHARP BOUNDS FOR THE NEUMAN-SANDOR MEAN IN TERMS OF GENERALIZED LOGARITHMIC MEAN
    Li, Yong-Min
    Long, Bo-Yong
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 567 - 577
  • [2] Sharp bounds for Neuman-Sándor’s mean in terms of the root-mean-square
    Wei-Dong Jiang
    Feng Qi
    [J]. Periodica Mathematica Hungarica, 2014, 69 : 134 - 138
  • [3] Sharp bounds for the reciprocals of the Neuman-Sandor mean
    Wang, Xueling
    Yin, Li
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (06) : 1767 - 1776
  • [4] Sharp bounds for the Neuman-Sandor mean in terms of the power and contraharmonic means
    Jiang, Wei-Dong
    Qi, Feng
    [J]. COGENT MATHEMATICS, 2015, 2
  • [5] SHARP BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    Chu, Yuming
    Zhao, Tiehong
    Song, Yingqing
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 797 - 806
  • [6] Bounds for the Arithmetic Mean in Terms of the Neuman-Sandor and Other Bivariate Means
    Zhang, Fan
    Chu, Yu-Ming
    Qian, Wei-Mao
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] OPTIMAL BOUNDS FOR THE FIRST SEIFFERT MEAN IN TERMS OF THE CONVEX COMBINATION OF THE LOGARITHMIC AND NEUMAN-SANDOR MEAN
    Lei, Jian-Jun
    Chen, Jing-Jing
    Long, Bo-Yong
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 365 - 377
  • [8] Optimal bounds for the Neuman-Sandor mean in terms of the first Seiffert and quadratic means
    Gong, Wei-Ming
    Shen, Xu-Hui
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] Bounds for the Neuman-Sandor Mean in Terms of the Arithmetic and Contra-Harmonic Means
    Li, Wen-Hui
    Miao, Peng
    Guo, Bai-Ni
    [J]. AXIOMS, 2022, 11 (05)
  • [10] A NOTE ON THE NEUMAN-SANDOR MEAN
    Sun, Hui
    Zhao, Tiehong
    Chu, Yuming
    Liu, Baoyu
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 287 - 297