Manifolk: A 3D t-SNE Visualizer

被引:0
|
作者
Kodur, Krishna Chaitanya [1 ]
Babu, Ashwin Ramesh [1 ]
Makedon, Fillia [1 ]
机构
[1] Univ Texas Arlington, Arlington, TX 76019 USA
关键词
Deep Neural Networks; t-SNE; Clustering;
D O I
10.1145/3453892.3466619
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Manifolk is a tool to visualize the output of dimensionality reduction algorithms like t-SNE, PCA etc. One of this tool's main uses is that it de-clutters graphs by plotting data points pertaining to a subset of labels. The subset of labels to be plotted can be selected using the provided checkboxes. A case study on data from a publicly available action recognition dataset like UCF101 shows how this tool can help find outliers. With the rise in self-supervised methods for training deep neural networks, this tool helps researchers better visualize the embeddings learned by the model.
引用
收藏
页码:107 / 108
页数:2
相关论文
共 50 条
  • [1] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [2] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [3] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    [J]. Machine Learning, 2021, 110 : 2905 - 2940
  • [4] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [5] Interactive Supervision with t-SNE
    Luus, Francois
    Khan, Naweed
    Akhalwaya, Ismail
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), 2019, : 85 - 92
  • [6] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294
  • [7] Visualization of SNPs with t-SNE
    Platzer, Alexander
    [J]. PLOS ONE, 2013, 8 (02):
  • [8] Accelerating Hyperbolic t-SNE
    Skrodzki, Martin
    van Geffen, Hunter
    Chaves-de-Plaza, Nicolas F.
    Hollt, Thomas
    Eisemann, Elmar
    Hildebrandt, Klaus
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 4403 - 4415
  • [9] Clustering with t-SNE, Provably
    Linderman, George C.
    Steinerberger, Stefan
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (02): : 313 - 332
  • [10] HCt-SNE: Hierarchical Constraints with t-SNE
    Vu, Viet Minh
    Bibal, Adrien
    Frenay, Benoit
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,