Classification of periodic orbits for systems with backlash

被引:1
|
作者
Shukla, Amit [1 ]
Besselink, Bart [2 ]
Fey, Rob H. B. [2 ]
Nijmeijer, Henk [2 ]
机构
[1] Miami Univ, Dept Mech & Mfg Engn, Oxford, OH 45056 USA
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
VIBRATION; OSCILLATORS; DYNAMICS;
D O I
10.1016/j.chaos.2007.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper systems with backlash are studied for the effect of excitation parameters on the periodic response. These systems are modeled as piecewise linear systems with discontinuity in the net restoring force, caused by additional damping in the contact zone. The periodic orbits are classified by their number of subspace boundary crossings and, alternatively, by the largest Floquet multipliers. Some observations are also presented about the qualitative features such as symmetry breaking bifurcations exhibited by this class of systems. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条
  • [1] POINCARE CLASSIFICATION OF UNSTABLE PERIODIC ORBITS
    VIEIRAMARTINS, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (21): : 1023 - 1025
  • [2] On the periodic orbits of Hamiltonian systems
    Llibre, Jaume
    Rodrigues, Ana
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [3] Periodic orbits in gravitational systems
    Hadjedemetriou, John D.
    Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, 2006, 227 : 43 - 79
  • [4] Topological classification of periodic orbits in Lorenz system
    董成伟
    Chinese Physics B, 2018, 27 (08) : 147 - 153
  • [6] Periodic orbits and escapes in dynamical systems
    Contopoulos, George
    Harsoula, Mirella
    Lukes-Gerakopoulos, Georgios
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (03): : 255 - 278
  • [7] CONTRACTIBLE PERIODIC ORBITS OF LAGRANGIAN SYSTEMS
    Paternain, Miguel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 445 - 453
  • [8] On periodic orbits of polynomial relay systems
    Jacquemard, Alain
    Pereira, Weber Flavio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (02) : 331 - 347
  • [9] Tunneling in complex systems and periodic orbits
    Ankerhold, J
    ADVANCES IN SOLID STATE PHYSICS 41, 2001, 41 : 433 - 445
  • [10] HYPERBOLIC PERIODIC ORBITS IN HAMILTONIAN SYSTEMS
    ROD, DL
    PECELLI, G
    CHURCHILL, RC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A515 - A516