VARIABLE SUBSET SELECTION FOR BRAIN-COMPUTER INTERFACE PCA-based Dimensionality Reduction and Feature Selection

被引:0
|
作者
Dias, N. S. [1 ]
Kamrunnahar, M. [2 ]
Mendes, P. M. [1 ]
Schiff, S. J. [2 ]
Correia, J. H. [1 ]
机构
[1] Univ Minho, Dept Ind Elect, Campus Azurem, P-4800058 Guimaraes, Portugal
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
关键词
BCI; EEG; Feature selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new formulation of principal component analysis (PCA) that considers group structure in the data is proposed as a Variable Subset Selection (VSS) method. Optimization of electrode channels is a key problem in brain-computer interfaces (BCI). BCI experiments generate large feature spaces compared to the sample size due to time limitations in EEG sessions. It is essential to understand the importance of the features in terms of physical electrode channels in order to design a high performance yet realistic BCI. The VSS produces a ranked list of original variables (electrode channels or features), according to their ability to discriminate between tasks. A linear discrimination analysis (LDA) classifier is applied to the selected variable subset. Evaluation of the VSS method using synthetic datasets selected more than 83% of relevant variables. Classification of imagery tasks using real BCI datasets resulted in less than 16% classification error.
引用
收藏
页码:35 / +
页数:3
相关论文
共 50 条
  • [1] Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface
    Tan, Ping
    Wang, Xin
    Wang, Yong
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2020, 52
  • [2] A Hybrid Approach to Feature Subset Selection for Brain-Computer Interface Design
    Gan, John Q.
    Hasan, Bashar Awwad Shiekh
    Tsui, Chun Sing Louis
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 279 - 286
  • [3] Feature Selection for Brain-Computer Interface
    Dias, N. S.
    Mendes, P. M.
    Correia, J. H.
    [J]. 4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 318 - 321
  • [4] Feature Down-Selection in Brain-Computer Interfaces Dimensionality Reduction and Discrimination Power
    Dias, N. S.
    Jacinto, L. R.
    Mendes, P. M.
    Correia, J. H.
    [J]. 2009 4TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, 2009, : 316 - +
  • [5] Genetic Algorithms for Feature Selection for Brain-Computer Interface
    Rejer, Izabela
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (05)
  • [6] ECoG Based Brain Computer Interface with Subset Selection
    Ince, Nuri F.
    Goksu, Fikri
    Tewfik, Ahmed H.
    [J]. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, 2008, 25 : 357 - 374
  • [7] Feature subset selection and ranking for data dimensionality reduction
    Wei, Hua-Liang
    Billings, Stephen A.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) : 162 - 166
  • [8] Feature Selection for Brain-Computer Interfaces
    Koprinska, Irena
    [J]. NEW FRONTIERS IN APPLIED DATA MINING, 2010, 5669 : 106 - 117
  • [9] Feature extraction and parameters selection of classification model on brain-computer interface
    Zhao, Mingyuan
    Zhou, Mingtian
    Zhu, Qingxin
    Yang, Ping
    [J]. PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 1249 - +
  • [10] Implementation of genetic algorithms to feature selection for the use of brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 71 - 76