Complete condition for nonzero quantum correlation in continuous variable systems

被引:1
|
作者
Zhang, Chengjie [1 ,2 ]
Yu, Sixia [2 ,3 ,4 ]
Chen, Qing [2 ,5 ]
Yuan, Haidong [6 ]
Lai, C. H. [2 ,7 ]
oh, C. H. [2 ,7 ]
机构
[1] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[5] Yunnan Univ, Dept Phys, Kunming 650091, Peoples R China
[6] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Hong Kong, Peoples R China
[7] Natl Univ Singapore, Dept Phys, Singapore 117543, Singapore
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
quantum correlation; continuous variables; quantum circuits; DISCORD;
D O I
10.1088/1367-2630/17/9/093007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum correlation provides a promising measure beyond entanglement. Here, we propose a necessary and sufficient condition for nonzero quantum correlation in continuous variable systems, which is simple and easy to perform in terms of a marker Q(r). In order to get this condition, we introduce continuous-variable local orthogonal bases of the operator space, which are generalized from the orthogonal basis sets in local operator space for discrete variables. Based on this, we obtain the marker Q(r) for all bipartite continuous variable states, and provide several examples including two-mode Gaussian and non-Gaussian states. Our result may provide a candidate for quantum correlation measures, and can be measured by designed quantum circuits.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Computable Gaussian Quantum Correlation for Continuous-Variable Systems
    Liu, Liang
    Hou, Jinchuan
    Qi, Xiaofei
    ENTROPY, 2021, 23 (09)
  • [2] Quantum communications in continuous variable systems
    Notarnicola, Michele N.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2025,
  • [3] Quantum mechanics with a nonzero quantum correlation time
    Bouchaud, Jean-Philippe
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [4] Quantum correlations relativity for continuous variable systems
    Dugi M.
    Arsenijevi M.
    Jekni-Dugi J.
    Science China(Physics,Mechanics & Astronomy), 2013, Mechanics & Astronomy)2013 (04) : 732 - 736
  • [5] Quantum correlations relativity for continuous variable systems
    M. Dugić
    M. Arsenijević
    J. Jeknić-Dugić
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 732 - 736
  • [6] Holonomic Quantum Control with Continuous Variable Systems
    Albert, Victor V.
    Shu, Chi
    Krastanov, Stefan
    Shen, Chao
    Liu, Ren-Bao
    Yang, Zhen-Biao
    Schoelkopf, Robert J.
    Mirrahimi, Mazyar
    Devoret, Michel H.
    Jiang, Liang
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [7] Quantitative Tomography for Continuous Variable Quantum Systems
    Landon-Cardinal, Olivier
    Govia, Luke C. G.
    Clerk, Aashish A.
    PHYSICAL REVIEW LETTERS, 2018, 120 (09)
  • [8] Measures of Quantum Synchronization in Continuous Variable Systems
    Mari, A.
    Farace, A.
    Didier, N.
    Giovannetti, V.
    Fazio, R.
    PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [9] Quantum correlations relativity for continuous variable systems
    Dugic, M.
    Arsenijevic, M.
    Jeknic-Dugic, J.
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (04) : 732 - 736
  • [10] Necessary and Sufficient Condition for Nonzero Quantum Discord
    Dakic, Borivoje
    Vedral, Vlatko
    Brukner, Caslav
    PHYSICAL REVIEW LETTERS, 2010, 105 (19)