Comment on "Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models"

被引:0
|
作者
Marsan, D [1 ]
Bean, CJ
机构
[1] Univ Savoie, Lab Geophys Interne & Tectonophys, F-73376 Le Bourget Du Lac, France
[2] Natl Univ Ireland Univ Coll Dublin, Dept Geol, Dublin 4, Ireland
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Modeling of earthquake sequences using an epidemic-type aftershock sequence model by Helmstetter and Sornette [Phys. Rev. E 66, 061104 (2002)] has led these authors to conclude that previous analyses of apparent earthquake diffusions were flawed. We show here that diffusion analyses based on spatiotemporal correlation measures for earthquake populations are an appropriate method for capturing the space-time coupling present in earthquake triggering processes.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models
    Helmstetter, A
    Sornette, D
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 24
  • [2] Reply to "Comment on 'Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models' "
    Helmstetter, A
    Sornette, D
    [J]. PHYSICAL REVIEW E, 2004, 69 (06): : 063102 - 1
  • [3] Multipoint correlation functions for continuous-time random walk models of anomalous diffusion
    Sanda, F
    Mukamel, S
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [4] Integrodifferential diffusion equation for continuous-time random walk
    Fa, Kwok Sau
    Wang, K. G.
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):
  • [5] Continuous-time random walk theory of superslow diffusion
    Denisov, S. I.
    Kantz, H.
    [J]. EPL, 2010, 92 (03)
  • [6] THE CONTINUOUS-TIME RANDOM WALK VERSUS THE GENERALIZED MASTER EQUATION
    Grigolini, Paolo
    [J]. FRACTALS, DIFFUSION, AND RELAXATION IN DISORDERED COMPLEX SYSTEMS, PART A, 2006, 133 : 357 - 474
  • [7] Continuous-time random walk approach to on-off diffusion
    Miyazaki, S
    Harada, T
    Budiyono, A
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2001, 106 (06): : 1051 - 1078
  • [8] Continuous-time random walk and parametric subordination in fractional diffusion
    Gorenflo, Rudolf
    Mainardi, Francesco
    Vivoli, Alessandro
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (01) : 87 - 103
  • [9] Generalized Diffusion Equation Associated with a Power-Law Correlated Continuous Time Random Walk
    Shi, Long
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [10] ASYMPTOTIC SOLUTIONS OF CONTINUOUS-TIME RANDOM-WALK MODEL OF DIFFUSION
    TUNALEY, JKE
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1974, 11 (05) : 397 - 408