Quasi-ergodic limits for finite absorbing Markov chains

被引:4
|
作者
Colonius, Fritz [1 ]
Rasmussen, Martin [2 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[2] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
关键词
Absorbing Markov chain; Quasi-stationary measure; Quasi-ergodic measure; Substochastic matrix; STATIONARY DISTRIBUTIONS;
D O I
10.1016/j.laa.2020.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present formulas for quasi-ergodic limits of finite absorbing Markov chains. Since the irreducible case has been solved in 1965 by Darroch and Seneta [6], we focus on the reducible case, and our results are based on a very precise asymptotic analysis of the (exponential and polynomial) growth behaviour along admissible paths. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 288
页数:36
相关论文
共 50 条
  • [1] On the quasi-ergodic distribution of absorbing Markov processes
    He, Guoman
    Zhang, Hanjun
    Zhu, Yixia
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 149 : 116 - 123
  • [2] Existence and uniqueness of quasi-stationary and quasi-ergodic measures for absorbing Markov chains: A Banach lattice approach
    Castro, Matheus M.
    Lamb, Jeroen S. W.
    Olicon-Mendez, Guillermo
    Rasmussen, Martin
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 173
  • [3] ASYMPTOTIC ENLARGEMENT OF QUASI-ERGODIC MARKOV-PROCESSES
    ANISIMOV, VV
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1982, (01): : 3 - 6
  • [4] Proof of the quasi-ergodic hypothesis
    von Neumann, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1932, 18 : 70 - 82
  • [5] On the existence of quasi-ergodic systems
    Fermi, E
    [J]. PHYSIKALISCHE ZEITSCHRIFT, 1924, 25 : 166 - 167
  • [6] The existence of quasi-ergodic systems
    Urbanski, W
    [J]. PHYSIKALISCHE ZEITSCHRIFT, 1924, 25 : 47 - 47
  • [7] QUASI-ERGODIC MEASUREMENTS OF IRRATIONAL TRANSLATIONS
    KEANE, M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (01): : 54 - &
  • [8] A quasi-ergodic theorem for evanescent processes
    Breyer, LA
    Roberts, GO
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) : 177 - 186
  • [9] ON QUASI-STATIONARY DISTRIBUTIONS IN ABSORBING CONTINUOUS-TIME FINITE MARKOV CHAINS
    DARROCH, JN
    SENETA, E
    [J]. JOURNAL OF APPLIED PROBABILITY, 1967, 4 (01) : 192 - &
  • [10] The Kemeny Constant for Finite Homogeneous Ergodic Markov Chains
    M. Catral
    S. J. Kirkland
    M. Neumann
    N.-S. Sze
    [J]. Journal of Scientific Computing, 2010, 45 : 151 - 166