Anode aging in polymer electrolyte membrane fuel Cells I: Anode monitoring by ElectroChemical impedance spectroscopy

被引:12
|
作者
Touhami, Salah [1 ]
Dubau, Laetitia [2 ]
Mainka, Julia [1 ]
Dillet, Jerome [1 ]
Chatenet, Marian [2 ]
Lottin, Olivier [1 ]
机构
[1] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
[2] Univ Grenoble Alpes, Univ Savoie Mt Blanc, Grenoble INP, CNRS,Inst Engn,LEPMI, F-38000 Grenoble, France
关键词
LOCAL POTENTIAL EVOLUTIONS; INLET RELATIVE-HUMIDITY; ACCELERATED STRESS TEST; DEAD-ENDED ANODE; CARBON CORROSION; PEMFC DURABILITY; START-UP; DEGRADATION; OPERATION; GAS;
D O I
10.1016/j.jpowsour.2020.228908
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Degradation of polymer electrolyte membrane fuel cells (PEMFC) is investigated through an accelerated stress test (AST) consisting of load-induced humidity cycling combined with open circuit voltage. This combined stressor-AST was designed to mimic real operating conditions. Commercially available membrane-electrode assemblies with an initial voltage of about 0.7 V at 0.5 A cm(-2) showed a performance drop of about 900 mu V h(-1). Their operation was followed by monitoring various parameters such as polarization plots, electrode electrochemical surface area, hydrogen permeation and electrochemical impedance spectra. The results demonstrate that, although initially, the anode may be ignored to model the impedance data, this is no longer possible during the AST. Experimental data show that, beyond classical cathode and membrane degradations, the cell undergoes pronounced anode degradations, that significantly affect the cell performances. Local potential measurements excluded the anode degradation to be linked to electrode potential cycling, the latter remaining always between 0 and 0.2 V vs reference hydrogen electrode. Classical mechanisms of Pt/C degradation may thus not be at stake here, but rather mechanical destabilization of the anode microstructure under wet-dry cycling. The temperature elevation at high current density, known to entail local membrane dehydration may be an aggravating factor.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anode defects' propagation in polymer electrolyte membrane fuel cells
    Touhami, Salah
    Crouillere, Marie
    Mainka, Julia
    Dillet, Jerome
    Nayoze-Coynel, Christine
    Bas, Corine
    Dubau, Laetitia
    El Kaddouri, Assma
    Dubelley, Florence
    Micoud, Fabrice
    Chatenet, Marian
    Bultel, Yann
    Lottin, Olivier
    [J]. JOURNAL OF POWER SOURCES, 2022, 520
  • [2] Electrochemical Pressure Impedance Spectroscopy for Polymer Electrolyte Membrane Fuel Cells: Signal Interpretation
    Schiffer, Lutz
    Bessler, Wolfgang G. G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (05)
  • [3] Anode defects' propagation in polymer electrolyte membrane fuel cells stack
    Bultel, Yann
    Bas, Corine
    Dubelley, Florence
    Micoud, Fabrice
    Nayoze-Coynel, Christine
    Rosini, Sebastien
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 257 - 264
  • [4] An Electrochemical Impedance Spectroscopy Study and Two Phase Flow Analysis of the Anode of a Polymer Electrolyte Membrane Water Electrolyser
    Dedigama, I.
    Brett, D. J. L.
    Mason, T. J.
    Millichamp, J.
    Shearing, P. R.
    Ayers, K.
    [J]. LOW-TEMPERATURE FUEL CELLS, ELECTROLYZERS, AND REDOX FLOW CELLS, 2015, 68 (03): : 117 - 131
  • [5] A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode
    Meland, AK
    Bedeaux, D
    Kjelstrup, S
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (45): : 21380 - 21388
  • [6] Estimation of Cation Contamination Level in Polymer Electrolyte Membrane Fuel Cells by Electrochemical Impedance Spectroscopy
    Shibata, M.
    Kitano, N.
    Shinohara, A.
    Asaoka, T.
    Sekine, S.
    Takeuchi, N.
    Morita, T.
    Kumei, H.
    [J]. SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 905 - 926
  • [7] Electrochemical pressure impedance spectroscopy for investigation of mass transfer in polymer electrolyte membrane fuel cells
    Shirsath, A. V.
    Rael, S.
    Bonnet, C.
    Schiffer, L.
    Bessler, W.
    Lapicque, F.
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 20 : 82 - 87
  • [8] Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells
    Kim, Mansu
    Jung, Namgee
    Eom, KwangSup
    Yoo, Sung Jong
    Kim, Jin Young
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Hong, Bo Ki
    Cho, EunAe
    [J]. JOURNAL OF POWER SOURCES, 2014, 266 : 332 - 340
  • [9] Microelectrode simulation of anode in polymer electrolyte fuel cells
    Katakura, K
    Hinatsu, JT
    Inatomi, K
    Inaba, M
    Ogumi, Z
    Takehara, Z
    [J]. DENKI KAGAKU, 1996, 64 (06): : 711 - 717
  • [10] Electrochemical Pressure Impedance Spectroscopy for Polymer Electrolyte Membrane Fuel Cells: A Combined Modeling and Experimental Analysis
    Schiffer, Lutz
    Shirsath, Anantrao Vijay
    Rael, Stephane
    Bonnet, Caroline
    Lapicque, Francois
    Bessler, Wolfgang G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)